广西师范大学学报(自然科学版) ›› 2016, Vol. 34 ›› Issue (2): 8-14.doi: 10.16088/j.issn.1001-6600.2016.02.002

• • 上一篇    下一篇

位置扰动对激发介质中螺旋波动力学行为的影响

戴静娱, 张学良, 邓敏艺, 谭惠丽   

  1. 广西师范大学物理科学与技术学院,广西桂林541004
  • 收稿日期:2015-12-15 发布日期:2018-09-14
  • 通讯作者: 谭惠丽(1977—),女(壮族),广西柳江人,广西师范大学副教授。E-mail: tanhuili_99@163.com
  • 基金资助:
    国家自然科学基金资助项目(11365003,11165004)

Effect of Position Perturbation for Spiral Waves in Excitable Media

DAI Jingyu, ZHANG Xueliang, DENG Minyi, TAN Huili   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2015-12-15 Published:2018-09-14

摘要: 本文在Greenberg-Hastings 激发介质元胞自动机模型规则网格基础上施加位置扰动,以此模拟激发介质中激发元之间相互作用距离的改变。计算机数值模拟结果表明:对于在规则网格下产生的稳定螺旋波,施加位置扰动后发现,螺旋波斑图的稳定性与元胞位置扰动的幅度有关,不同幅度的元胞位置扰动导致稳定螺旋波发生两种不同的变化:漫游后形成新的稳定螺旋波;漫游后从系统中消失。通过波头运动轨迹和系统激发比率的变化来简要分析产生这些现象的原因。

关键词: 激发介质, 螺旋波, 位置扰动, 元胞自动机模型

Abstract: Based on the Greenberg-Hastings cellular automata model, the effect of the position perturbation for the spiral waves in excitable media is studied. The amplitude of the position perturbation represents the interaction distance between cells. The computer simulation results show that the position perturbations with different amplitudes are added into the system after the stable spiral wave is formed, and the stability of spiral wave meanders is related to the range of the position perturbation of the cells. Different ranges of the position perturbation will result in two different changes of the stable waves. New stable waves are formed or disappeared after meanders. The two types meandering behavior are observed, and the mechanism underlying these phenomena are analyzed.

Key words: excitable media, spiral wave, position perturbation, cellular automata model

中图分类号: 

  • O411.3
[1] GERHARDT M, SCHUSTER H, TYSON J J. A cellular automaton model of excitable media including curvature and dispersion[J]. Science, 1990, 247(4950): 1563-1566.
[2] DAVIDENKO J M, KENT P F, CHIALVO D R, et al. Sustained vortex-like waves in normal isolated ventricular muscle[J]. Proceedings of the National Academy of Sciences, 1990, 87: 8785-8789.
[3] DAVIDENKO J M, PERTSOV A V, SALOMONSZ R, et al. Stationary and driftingspiral waves of excitation in isolated cardiac muscle[J]. Nature, 1992, 355: 349-351.
[4] NASH M P, PANFILOV A V. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias[J]. Progress in Biophysics and Molecular Biology, 2004, 85(2): 501-522.
[5] 欧阳颀. 反应扩散系统中螺旋波的失稳[J]. 物理, 2001, 30(1): 30-35.
[6] CHEN J X, HU B. Spiral breakup and consequent patterns induced by strong polarized advective field[J]. Europhysics Letters, 2008, 84(3): 34002.
[7] LIU G Q, WU N J, YING H P. The drift of spirals under competitive illumination in an excitable medium[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9): 2398-2401.
[8] 钟敏,唐国宁.限制钾离子电流抑制心脏中螺旋波和时空混沌[J].广西师范大学学报(自然科学版),2010, 28(2): 6-8.
[9] 马军,应和平,李延龙,等.混沌信号驱动实现螺旋波和时空混沌抑制[J].郑州大学学报(理学版),2006,38(1): 45-49.
[10] JIMÈNEZ Z A, MARTS B, STEINBOCK O. Pinned scroll rings in an excitable system[J]. Physcial Review Letters, 2009, 102(24): 244101.
[11] 戴瑜, 韦海明, 唐国宁. 非均匀激发介质中螺旋波的演化[J]. 物理学报, 2010,59(9): 5979-5983.
[12] HE D H, HU G, ZHAN M, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections[J]. Physcial Review E, 2002, 65(5): 055204.
[13] FELDMAN A, YIN J Z, SAXBERG B E H, et al. Vortex wave stability in homogeneous excitable media: Simulations on a randomized discrete iscrete lattice[J]. Engineering in Medicine and Biology Society, 1995, 1: 25-26.
[14] DILLON S M, ALLESSIE M A, URSELL P C, et al. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts[J]. Circulation Research, 1988, 63(1): 182-206.
[15] HOYT R H, COHEN M L, SAFFITZ J E. Distribution and three-dimensional structure of intercellular junctions in canine myocardium[J]. Circulation Research, 1989, 64(3): 563-574.
[16] LUKE R A, SAFFITZ J E. Remodeling of ventricular conduction pathways in healed canine infarct border zones[J]. Journal of Clinical Investigation, 1991, 87(5): 1594-1602.
[17] 田兴玲,刘慕仁,郭俊华.小世界网络上的差额选举模型[J].郑州大学学报(理学版),2008,40(2):60-65.
[18] 梁玉娟.从动能损失看弯道路段的通行能力[J].四川师范大学学报(自然科学版),2011,34(3):355-359.
[19] DENG M Y, CHEN X Q, TANG G N. The effect of cellular aging on the dynamics of spiral waves[J]. Chin Phys B, 2014, 23(12): 120503.
[20] GREENBERG J M, HASTINGS S P. Spatial patterns for discrete models of diffusion in excitable media[J]. SIAM J Appl Math, 1978, 34(3): 515-523.
[21] ZHAO Y, BILLINGS S A, ROUTH A F. Identification of the Belousov-Zhabotingskii reaction using cellular automata[J]. International Journal of Bifurcation and Chaos, 2007, 17(5): 1687-1701.
[1] 张学良,谭惠丽,白克钊,唐国宁,邓敏艺. 一种体现心肌细胞传导记忆的元胞自动机模型[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 1-9.
[2] 黄雯, 谭惠丽. 心脏记忆对螺旋波动力学的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 1-8.
[3] 邓敏艺, 谭惠丽. 一个双变量元胞自动机模型的定性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 1-6.
[4] 潘江洪, 白克钊, 邝华, 孔令江. 一种考虑能见度影响的元胞自动机交通流模型[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发