|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 23-34.doi: 10.16088/j.issn.1001-6600.2024092807
齐丹丹1, 王长征2, 郭少茹1, 闫智超1, 胡志伟1, 苏雪峰1,3, 马博翔1, 李时钊1, 李茹1,4*
QI Dandan1 , WANG Changzheng2 , GUO Shaoru1, YAN Zhichao1, HU Zhiwei1, SU Xuefeng1,3, MA Boxiang1, LI Shizhao1, LI Ru1,4*
摘要: 零样本实体检索旨在将实体提及(mention)链接到训练阶段未见过的实体,在多种自然语言处理任务中起关键作用。然而现有方法依然存在2个问题:1)仅使用实体描述的前k个句子来构建实体的多视图表示,导致实体多视图语义冗余与缺失,很难充分学习提及与实体之间的匹配关系;2)仅以提及为中心构造正负例,对提及与实体之间的对比关系覆盖度较低,导致其匹配错误。 针对以上2个问题,本文提出基于主题的多视图实体表示(Topic-MVER)方法。该方法基于主题构建实体的多视图表示,并使用对比学习建模提及与实体之间的3种关系,提升提及和实体对表示的匹配性。该方法在ZESHEL和MedMentions数据集上的Recall@1分别达到48.13%和73.86%,较基线模型分别提升2.73和1.21个百分点,验证了本文方法的有效性。
中图分类号: TP391.1
| [1] PERSHINA M, HE Y F, GRISHMAN R. Personalized page rank for named entity disambiguation[C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2015: 238-243. DOI: 10.3115/v1/N15-1026. [2]ZWICKLBAUER S, SEIFERT C, GRANITZER M. Robust and collective entity disambiguation through semantic embeddings[C]// Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2016: 425-434. DOI: 10.1145/2911451.2911535. [3]CECCARELLI D, LUCCHESE C, ORLANDO S, et al. Learning relatedness measures for entity linking[C]// Proceedings of the 22nd ACM international conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2013: 139-148. DOI: 10.1145/2505515.2505711. [4]HAN X P, SUN L, ZHAO J. Collective entity linking in web text: a graph-based method[C]// Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval. New York: Association for Computing Machinery, 2011: 765-774. DOI: 10.1145/2009916.2010019. [5]徐正斐, 辛欣. 基于大语言模型的中文实体链接实证研究[J]. 自动化学报, 2025, 51(2): 327-342. DOI: 10.16383/j.aas.c240069. [6]龙斌. 基于预训练模型的中文短文本实体链接研究与实现[D]. 无锡: 江南大学, 2023. DOI: 10.27169/d.cnki.gwqgu.2023.001591. [7]TANG H Y, SUN X W, JIN B H, et al. A bidirectional multi-paragraph reading model for zero-shot entity linking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13889-13897. DOI: 10.1609/aaai.v35i15.17636. [8]XU Z R, CHEN Y L, HU B T, et al. A read-and-select framework for zero-shot entity linking[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, PA: Association for Computational Linguistics, 2023: 13657-13666. DOI: 10.18653/v1/2023.findings-emnlp.912. [9]李明扬, 姜嘉伟, 孔芳. 融入丰富信息的高性能神经实体链接[J]. 中文信息学报, 2020, 34(1): 87-96. DOI: 10.3969/j.issn.1003-0077.2020.01.012. [10]张玥, 李韧, 杨建喜, 等. 基于深度神经网络的实体链接研究综述[J]. 中文信息学报, 2024, 38(8): 1-14. DOI: 10.3969/j.issn.1003-0077.2024.08.001. [11]LOGESWARAN L, CHANG M W, LEE K, et al. Zero-shot entity linking by reading entity descriptions[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 3449-3460. DOI: 10.18653/v1/P19-1335. [12]GILLICK D, KULKARNI S, LANSING L, et al. Learning dense representations for entity retrieval[C]// Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL). Stroudsburg, PA: Association for Computational Linguistics, 2019: 528-537. DOI: 10.18653/v1/K19-1049. [13]WU L, PETRONI F, JOSIFOSKI M, et al. Scalable zero-shot entity linking with dense entity retrieval[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA: Association for Computational Linguistics, 2020: 6397-6407. DOI: 10.18653/v1/2020.emnlp-main.519. [14]MA X Y, JIANG Y, BACH N, et al. MuVER: improving first-stage entity retrieval with multi-view entity representations[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2617-2624. [15]ZHANG W Z, STRATOS K. Understanding hard negatives in noise contrastive estimation[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2021: 1090-1101. DOI: 10.18653/v1/2021.naacl-main.86. [16]MOHAN S, LI D H. MedMentions: a large biomedical corpus annotated with UMLS concepts[EB/OL]. (2019-02-25)[2024-09-28]. https://arxiv.org/abs/1902.09476. DOI: 10.48550/arXiv.1902.09476. [17]冯冲, 石戈, 郭宇航, 等. 基于词向量语义分类的微博实体链接方法[J]. 自动化学报, 2016, 42(6): 915-922. DOI: 10.16383/j.aas.2016.c150715. [18]汪沛, 线岩团, 郭剑毅, 等. 一种结合词向量和图模型的特定领域实体消歧方法[J]. 智能系统学报, 2016, 11(3): 366-375. DOI: 10.11992/tis.201603048. [19]陈贵龙. 基于深度学习的实体链接方法与系统[D].北京: 中国科学院大学, 2020. DOI: 10.27824/d.cnki.gzkdx.2020.000028. [20]ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: BM25 and beyond[J]. Foundations and Trends© in Information Retrieval, 2009, 3(4): 333-389. DOI: 10.1561/1500000019. [21]王晨旭. 面向新闻文本的实体抽取和链接技术研究[D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.006189. [22]AGARWAL D, ANGELL R, MONATH N, et al. Entity linking via explicit mention-mention coreference modeling[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2022: 4644-4658. DOI: 10.18653/v1/2022.naacl-main.343. [23]WU T Q, BAI X Y, GUO W G, et al. Modeling fine-grained information via knowledge-aware hierarchical graph for zero-shot entity retrieval[C]// Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York: Association for Computing Machinery, 2023: 1021-1029. DOI: 10.1145/3539597.3570415. [24]邵子洋. 基于语义强化嵌入的实体链接研究及应用[D]. 成都: 电子科技大学, 2023. DOI: 10.27005/d.cnki.gdzku.2023.002158. [25]PARTALIDOU E, CHRISTOU D, TSOUMAKAS G. Improving zero-shot entity retrieval through effective dense representations[C]// Proceedings of the 12th Hellenic Conference on Artificial Intelligence. New York: Association for Computing Machinery, 2022: 1-5. DOI: 10.1145/3549737.3549771. [26]SUN K, ZHANG R C, MENSAH S, et al. A transformational biencoder with in-domain negative sampling for zero-shot entity linking[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, PA: Association for Computational Linguistics, 2022: 1449-1458. DOI: 10.18653/v1/2022.findings-acl.114. [27]XIONG L, XIONG C Y, LI Y, et al. Approximate nearest neighbor negative contrastive learning for dense text retrieval[EB/OL]. (2020-10-20)[2024-09-28]. https://arxiv.org/abs/2007.00808. DOI: 10.48550/arXiv.2007.00808. [28]ZHAN J T, MAO J X, LIU Y Q, et al. Optimizing dense retrieval model training with hard negatives[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2021: 1503-1512. DOI: 10.1145/3404835.3462880. [29]范鹏程, 沈英汉, 许洪波, 等. 融合实体知识描述的实体联合消歧方法[J]. 中文信息学报, 2020, 34(7): 42-49, 78. DOI: 10.3969/j.issn.1003-0077.2020.07.004. [30]XIE Q Z, DAI Z H, HOVY E, et al. Unsupervised data augmentation for consistency training[C]// Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Red Hook: Curran Associates Inc., 2020: 6256-6268. [31]SUKHBAATAR S, GRAVE E, BOJANOWSKI P, et al. Adaptive attention span in transformers[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 331-335. DOI: 10.18653/v1/P19-1032. [32]RAE J W, POTAPENKO A, JAYAKUMAR S M, et al. Compressive transformers for long-range sequence modelling[EB/OL]. (2019-11-13)[2024-09-28]. https://arxiv.org/abs/1911.05507. DOI: 10.48550/arXiv.1911.05507. [33]YAO Z H, CAO L L, PAN H P. Zero-shot entity linking with efficient long range sequence modeling[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, PA: Association for Computational Linguistics, 2020: 2517-2522. DOI: 10.18653/v1/2020.findings-emnlp.228. [34]ZHANG S Y, LIANG Y B, GONG M, et al. Multi-view document representation learning for open-domain dense retrieval[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 5990-6000. DOI: 10.18653/v1/2022.acl-long.414. [35]BIRD S, LOPER E. NLTK: the natural language toolkit[C]// Proceedings of the ACL Interactive Poster and Demonstration Sessions. Stroudsburg, PA: Association for Computational Linguistics, 2004: 214-217. DOI: 10.3115/1219044.1219075. [36]GROOTENDORST M. BERTopic: neural topic modeling with a class-based TF-IDF procedure[EB/OL]. (2022-03-11)[2024-09-28]. https://arxiv.org/abs/2203.05794. DOI: 10.48550/arXiv.2203.05794. [37]VAN DEN OORD A, LI Y Z, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2019-01-22)[2024-09-28]. https://arxiv.org/abs/1807.03748. DOI: 10.48550/arXiv.1807.03748. [38]JOHNSON J, DOUZE M, JÉGOU H. Billion-scale similarity search with GPUs[J]. IEEE Transactions on Big Data, 2021, 7(3): 535-547. DOI: 10.1109/TBDATA.2019.2921572. [39]杜帅文, 靳婷. 基于用户行为特征的深度混合推荐算法[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 91-100. DOI: 10.16088/j.issn.1001-6600.2023110603. |
| [1] | 李志欣, 刘鸣琦. 差异特征导向的解耦多模态情感分析[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 57-71. |
| [2] | 张丽杰, 王绍卿, 张尧, 孙福振. 基于分级注意力网络和多层对比学习的社交推荐[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 133-148. |
| [3] | 李文博, 董青, 刘超, 张奇. 基于对比学习的儿科问诊对话细粒度意图识别[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 1-10. |
|
||
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |