|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 1-11.doi: 10.16088/j.issn.1001-6600.2024092703
• CCIR2024 • 下一篇
何安康1,2,3, 陈艳平1,2,3*, 扈应1,2,3, 黄瑞章1,2,3, 秦永彬1,2,3
HE Ankang1,2,3, CHEN Yanping1,2,3*, HU Ying1,2,3, HUANG Ruizhang1,2,3, QIN Yongbin1,2,3
摘要: 命名实体识别是自然语言处理领域中的一项基本任务,旨在识别和分类文本中的命名实体。目前,基于跨度的方法在实体识别方面取得一定进展,但这些方法往往忽视了候选跨度的质量差异。针对该问题,本文提出一种融合边界交互信息的命名实体识别方法。该方法通过一个边界交互模块评估边界间的语义关联和交互强度,生成边界交互信息矩阵,用于识别边界间潜在的语义联系,引导模型识别和标记出高质量的候选跨度。此外,该方法集成多尺度空洞卷积模块,利用跨度之间的语义关系来减轻非实体噪声的影响。实验表明,本文方法在ACE2005中文数据集、ACE2005英文数据集和Weibo数据集上的F1值分别达到89.78%、87.37%和72.10%,与基准模型相比分别提升0.67、0.95和0.69个百分点,验证了该方法对命名实体识别的有效性。
中图分类号: TP391.1
| [1] 赵山, 罗睿, 蔡志平. 中文命名实体识别综述[J]. 计算机科学与探索, 2022, 16(2): 296-304. DOI: 10.3778/j.issn.1673-9418.2107031. [2]乔勇鹏, 于亚新, 刘树越, 等. 图卷积增强多路解码的实体关系联合抽取模型[J]. 计算机研究与发展, 2023, 60(1): 153-166. DOI: 10.7544/issn1000-1239.202110767. [3]冀相冰, 朱艳辉, 詹飞, 等. 基于门控多层次注意机制的事件主体抽取[J]. 计算机应用与软件, 2021, 38(9): 173-179, 187. DOI: 10.3969/j.issn.1000-386x.2021.09.027. [4]秦贺然, 刘浏, 李斌, 等. 融入实体特征的典籍自动分类研究[J]. 数据分析与知识发现, 2019, 3(9): 68-76. DOI: 10.11925/infotech.2096-3467.2019.0135. [5]肖新凤, 李石君, 余伟, 等. 基于改进seq2seq模型的英汉翻译研究[J]. 计算机工程与科学, 2019, 41(7): 1257-1265. DOI: 10.3969/j.issn.1007-130X.2019.07.016. [6]俞鸿魁, 张华平, 刘群, 等. 基于层叠隐马尔可夫模型的中文命名实体识别[J]. 通信学报, 2006, 27(2): 87-94. DOI: 10.3321/j.issn:1000-436X.2006.02.013. [7]胡文博, 都云程, 吕学强, 等. 基于多层条件随机场的中文命名实体识别[J]. 计算机工程与应用, 2009, 45(1): 163-165, 227. DOI: 10.3778/j.issn.1002-8331.2009.01.051. [8]陈启丽, 黄冠和, 王元卓, 等. 一种融合注意力机制的自适应实体识别方法[J]. 中文信息学报, 2021, 35(6): 55-62, 73. DOI: 10.3969/j.issn.1003-0077.2021.06.006. [9]SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 605-620. DOI: 10.1162/tacl_a_00334. [10]WANG J, SHOU L D, CHEN K, et al. Pyramid: a layered model for nested named entity recognition[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 5918-5928. DOI: 10.18653/v1/2020.acl-main.525. [11]LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2015: 857-867. DOI: 10.18653/v1/D15-1102. [12]MUIS A O, LU W. Learning to recognize discontiguous entities[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 75-84. DOI: 10.18653/v1/D16-1008. [13]WANG B L, LU W. Neural segmental hypergraphs for overlapping mention recognition[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 204-214. DOI: 10.18653/v1/D18-1019. [14]LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 7871-7880. DOI: 10.18653/v1/2020.acl-main.703. [15]CUI L Y, WU Y, LIU J, et al. Template-based named entity recognition using BART[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 1835-1845. DOI: 10.18653/v1/2021.findings-acl.161. [16]FEI H, JI D H, LI B B, et al. Rethinking boundaries: end-to-end recognition of discontinuous mentions with pointer networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(14): 12785-12793. DOI: 10.1609/aaai.v35i14.17513. [17]扈应, 陈艳平, 黄瑞章, 等. 结合CRF的边界组合生物医学命名实体识别[J]. 计算机应用研究, 2021, 38(7): 2025-2031. DOI: 10.19734/j.issn.1001-3695.2020.09.0238. [18]黄蓉, 陈艳平, 扈应, 等. 结合实体边界线索的中文命名实体识别方法[J]. 计算机工程与应用, 2024, 60(6): 199-206. DOI: 10.3778/j.issn.1002-8331.2211-0119. [19]YU J T, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 6470-6476. DOI: 10.18653/v1/2020.acl-main.577. [20]DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[EB/OL]. (2017-03-10)[2024-09-27]. https://arxiv.org/abs/1611.01734. DOI: 10.48550/arXiv.1611.01734. [21]SHEN Y L, MA X Y, TAN Z Q, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 2782-2794. DOI: 10.18653/v1/2021.acl-long.216. [22]LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10965-10973. DOI: 10.1609/aaai.v36i10.21344. [23]JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1): 27. DOI: 10.1186/s40537-019-0192-5. [24]WAN J C, RU D Y, ZHANG W N, et al. Nested named entity recognition with span-level graphs[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 892-903. DOI: 10.18653/v1/2022.acl-long.63. [25]COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. The Journal of Machine Learning Research, 2011, 12: 2493-2537. [26]YAN H, DENG B C, LI X N, et al. TENER: adapting transformer encoder for named entity recognition[EB/OL]. (2019-12-10)[2024-09-27]. https://arxiv.org/abs/1911.04474. DOI: 10.48550/arXiv.1911.04474. [27]LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2001: 282-289. [28]WANG Y C, YU B W, ZHU H S, et al. Discontinuous named entity recognition as maximal clique discovery[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 764-774. DOI: 10.18653/v1/2021.acl-long.63. [29]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. [30]WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA: Association for Computational Linguistics, 2019: 5784-5789. DOI: 10.18653/v1/D19-1585. [31]LI F, LIN Z C, ZHANG M S, et al. A span-based model for joint overlapped and discontinuous named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021: 4814-4828. DOI: 10.18653/v1/2021.acl-long.372. [32]NIAN Y M, CHENY P, QIN Y B, et al. A joint model for entity boundary detection and entity span recognition[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(10, Part A): 8362-8369. DOI: 10.1016/j.jksuci.2022.08.016. [33]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [34]HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. (2023-06-06)[2024-09-27]. https://arxiv.org/abs/1606.08415. DOI: 10.48550/arXiv.1606.08415. [35]CHEN Y P, WU Y F, QIN Y B, et al. Recognizing nested named entity based on the neural network boundary assembling model[J]. IEEE Intelligent Systems, 2020, 35(1): 74-81. DOI: 10.1109/MIS.2019.2952334. [36]SHEN Y L, SONG K T, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2023: 3875-3890. DOI: 10.18653/v1/2023.acl-long.215. [37]ZHU E W, LI J P. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2022: 7096-7108. DOI: 10.18653/v1/2022.acl-long.490. [38]WANG S H, SUN X F, LI X Y, et al. GPT-NER: named entity recognition via large language models[EB/OL]. (2023-10-07)[2024-09-27]. https://arxiv.org/abs/2304.10428. DOI: 10.48550/arXiv.2304.10428. |
| [1] | 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12-22. |
| [2] | 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59-71. |
| [3] | 周圣凯, 富丽贞, 宋文爱. 基于深度学习的短文本语义相似度计算模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 49-56. |
| [4] | 万福成,马宁,何向真. 融合事件特征及语义角色标注的藏文信息抽取技术[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 18-23. |
| [5] | 宋俊, 韩啸宇, 黄宇, 黄廷磊, 付琨. 一种面向实体的演化式多文档摘要生成方法[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 36-41. |
| [6] | 张春元. 基于CRFs的新闻网页主题内容自动抽取方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 138-142. |
| [7] | 程显毅, 潘燕, 朱倩, 孙萍. 面向事件的多文档文摘生成算法的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 147-150. |
| [8] | 黄锋, 吴华瑞. 一种自适应的Web信息抽取规则自动生成方法[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 127-130. |
|
||
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |