|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 69-75.doi: 10.16088/j.issn.1001-6600.2022120708
李鹏博, 李永祥*
LI Pengbo, LI Yongxiang*
摘要: 本文讨论RN(N≥2)中外部区域Ω={x∈RN:x>r0}上一类p-Laplace边值问题径向对称解的存在性。不同于已有文献,对连续函数f:R→R,不要求f非负,在其满足适当不等式条件下,应用Leray-Schauder不动点定理获得径向对称解的存在性,并在此基础上进一步讨论径向对称解的唯一性。
中图分类号: O175.8
[1] GIDAS B,NI W M,NIRENBERG L.Symmetry and related properties via the maximum principle[J].Communications in Mathematical Physics, 1979, 68(3): 209-243.DOI: 10.1007/BF01221125. [2] 符谦.一类半正椭圆方程径向正解的存在性[J].吉林大学学报(理学版),2021,59(4):753-762. DOI:10.13413/j.cnki.jdxblxb.2020338. [3] 姚庆六.一类非线性Dirichlet边值问题的正径向解[J].数学物理学报,2009,29(1):48-56. [4] 孙鑫.一类环形区域上的椭圆问题[J].太原师范学院学报(自然科学版),2012,11(4):114-116. [5] 金启胜.一类半线性椭圆型方程正解[J].吉林师范大学学报(理学版)2013,34(3):70-71. [6] 李永祥.球外部区域上非线性椭圆型方程的正径向解[J].数学研究与评论,2005,25(1):128-133. DOI:10.3770/j.issn:1000-341X.2005.01.018. [7] JIANG D Q,O’REGAN D,AGARWAL R P. A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian[J]. Journal of Applied Analysis,2005,11(1): 35-47. DOI: 10.1515/JAA.2005.35. [8] Lü H S,O’REGAN D.Construction of upper and lower solutions for singular discrete initial and boundary value problems via inequality theory[J]. Advances in Difference Equations,2005(2):459124.DOI: 10.1155/ADE.2005.205. [9] LEE Y H.Eigenvalues of singular boundary value problems and existence results for positive radial solutions of semilinear elliptic problems in exterior domains[J]. Differential Integral Equations, 2000, 13(4/5/6): 631-648. DOI: 10.57262/die/1356061242. [10] LEE Y H.A multiplicity result of positive radial solutions for a multiparameter elliptic system on an exterior domain[J].Nonlinear Analysis-Theory, Methods & Applications. 2001, 45(5): 597-611. DOI: 10.1016/S0362-546X(99)00410-1. [11] KIM C G.Existence of positive solutions for singular boundary value problems involving the one-dimensional p-Laplacian[J]. Nonlinear Analysis-Theory,Methods & Applications. 2009,70(12):4259-4267. DOI: 10.1016/j.na.2008.09.011. [12] STAŃCZY R.Positive solutions for superlinear elliptic equations[J].Journal of Mathematical Analysis and Applications, 2003, 283(1): 159-166. DOI: 10.1016/S0022-247X(03)00265-8. [13] PRECUP R.Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems[J]. Journal of Mathematical Analysis and Applications, 2009, 352(1): 48-56. DOI: 10.1016/j.jmaa.2008.01.097. [14] KO E, RAMASWAMY M,SHIVAJI R. Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball[J]. Journal of Mathematical Analysis and Applications, 2015, 423(1): 399-409.DOI: 10.1016/j.jmaa.2014.09.058. [15] LI Y X,ZHANG H H.Existence of positive radial solutions for the elliptic equations on an exterior domain[J]. Annales Polonici Mathematici, 2016, 116(1): 67-78. DOI: 10.4064/ap3633-12-2015. [16] MA D X,DU Z J,GE W G.Existence and iteration of monotone positive solutions for multipoint boundary value problem with p-Laplacian operator[J]. Computers & Mathematics with Applications. 2005,50(5/6):729-739. DOI: 10.1016/j.camwa.2005.04.016. [17] LI Y X,WEI M.Positive radial solutions of p-Laplace equations on exterior domains[J]. AIMS Mathematics, 2021, 6(8): 8949-8958.DOI: 10.3934/MATH.2021519. [18] BONDERJ F,PINASCO J P.Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator[J]. Arkiv för Matematik, 2003, 41(2): 267-280. DOI: 10.1007/BF02390815. [19] DEIMLING K.Nonlinear functional analysis[M]. Berlin:Springer, 1985. DOI: 10.1007/978-3-662-00547-7. |
[1] | 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64. |
[2] | 闫荣君, 韦煜明, 冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 75-82. |
[3] | 章美月. 关于电子束聚焦系统模型的一些新结果[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 38-44. |
[4] | 潘凤燕, 冯春华. 脉冲时滞细胞神经网络系统的反周期解[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 23-26. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |