|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (1): 49-52.doi: 10.16088/j.issn.1001-6600.2017.01.008
卢家宽,邱燕燕
LU Jiakuan, QIU Yanyan
摘要: 称有限群G的子群H为弱s-可补子群,如果存在G的子群K,使得G=HK,H∩K≤HsG,其中HsG是由H的在G中s-置换的子群生成的子群。本文证明了如下结果:①如果有限群G的奇素数阶子群在G中弱s-可补,那么G是可解群;②有限群G是可解群当且仅当G的所有奇数阶Sylow子群在G中弱s-可补。这2个结果推广和改进了已有的结果。
中图分类号:
[1] KEGEL O H. Sylow-gruppen and subnormalteiler endlicher gruppen[J]. Math Z, 1962, 78(1): 205-221. DOI: 10.1007/BF01195169. [2] DESKINS W E. On quasinormal subgroups of finite groups[J]. Math Z, 1963, 82(2): 125-132. DOI: 10.1007/BF01111801. [3] ASAAD M. On the solvability of finite groups[J]. Arch der Math, 1988, 51(4): 289-293. DOI: 10.1007/BF01194016. [4] SCHMID P. Subgroups permutable with all Sylow subgroups[J]. J Algebra, 1998, 207(1): 285-293. DOI: 10.1006/jabr.1998.7429. [5] 张勤海,王丽芳. s-半置换子群对群构造的影响[J]. 数学学报, 2005, 48(1): 81-88. [6] 裴旭莲,钟祥贵. 共轭置换子群与群的幂零性[J]. 广西师范大学学报(自然科学版), 2007, 25(3): 28-31. DOI: 10.16088/j.issn.1001-6600.2007.03.001. [7] 卢家宽,孟伟. 有限群的π-拟正规子群[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 35-37. DOI: 10.16088/j.issn.1001-6600.2011.01.034. [8] BALLESTER-BOLINICHES A, WANG Yanming, GUO Xiuyun. C-supplemented subgroups of finite groups[J]. Glasgow Math J, 2000, 42(3): 383-389. DOI: 10.1017/S001708950003007X. [9] SKIBA A N. On weakly s-permutable subgroups of finite groups[J]. J Algebra, 2007, 315(1): 192-209. DOI: 10.1016/j.jalgebra.2007.04.025. [10] WANG Yanming. Finite groups with some subgroups of Sylow subgroups c-supplemented[J]. J Algebra, 2000, 224(2): 467-478. DOI: 10.1006/jabr.1999.8079. [11] ASAAD M, RAMADAN M. Finite groups whose minimal subgroups are c-supplemented[J]. Comm Algebra, 2008, 36(3): 1034-1040. DOI: 10.1080/00927870701776805. [12] LI Yangming, LI Baojun. On minimal weakly s-supplemented subgroups of finite groups[J]. Journal of Algebra and Its Applications, 2011, 10(5):811-820. DOI: 10.1142/S021949881100494X. [13] HELIEL A A. A note on c-supplemented subgroups of finite groups[J]. Comm Algebra, 2014, 42(4): 1650-1656. DOI: 10.1080/00927872.2012.747599. [14] HUPPERT B. Endliche gruppen I[M]. Berlin: Springer-Verlag, 1967. DOI:10.1007/978-3-642-64981-3. [15] QIAO Shouhong. Weakly s-supplemented subgroups and p-nilpotency of finite groups[J]. Indian Journal of Pure and Applied Mathematics, 2013, 44(6): 795-808. DOI: 10.1007/s13226-013-0043-6. [16] DOERK K, HAWKES T. Finite soluble groups[M]. Berlin: Walter de Gruyter, 1992. [17] GURALNICK R M. Subgroups of prime power index in a simple group[J]. J Algebra, 1983, 81(2): 304-311. DOI: 10.1016/0021-8693(83)90190-4. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |