广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (1): 70-75.doi: 10.16088/j.issn.1001-6600.2018.01.009

• • 上一篇    下一篇

领导—跟随多智能体系统在分布式自适应控制下的滞后一致性

呼文军1,马忠军2,马梅2   

  1. 1.吕梁学院数学系,山西吕梁033000;
    2.桂林电子科技大学数学与计算科学学院,广西桂林541004
  • 收稿日期:2017-05-30 出版日期:2018-01-20 发布日期:2018-07-17
  • 通讯作者: 马忠军(1973—),男,湖南邵阳人,桂林电子科技大学教授。E-mail:mzj1234402@163.com
  • 基金资助:
    国家自然科学基金(11562006,61663006);广西自然科学基金(2015GXNSFAA139013);广西优秀中青年骨干教师培养工程项目(GXQG022014025);吕梁学院校级基金(ZRQN201515)

Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control

HU Wenjun1,MA Zhongjun2,MA Mei2   

  1. 1. Department of Mathematics, Lüliang University,Lüliang Shanxi 033000,China;
    2. School of Mathematics and Computing Science, Guilin University of Electronic Technology,Guilin Guangxi 541004,China
  • Received:2017-05-30 Online:2018-01-20 Published:2018-07-17

摘要: 本文研究个体自身动力学具有滞后效应的领导—跟随多智能体系统的滞后一致性问题。首先,给出一个基于邻居信息和领导者信息的分布式控制协议,其中的控制增益是自适应的。然后,在这个控制协议下,运用稳定性理论,导出了该系统实现滞后一致性的充分条件。最后,数值模拟验证了理论结果的有效性和可行性。

关键词: 领导—跟随, 多智能体系统, 滞后, 一致性

Abstract: In this paper,the delay consensus problem of leader-following multi-agent systems with delay is considered. First,based only on information of the neighbors and the leader,a distributed control protocol is proposed, in which control gain is adaptive. Then,under this protocol,by applying the stability theory,a sufficient condition for the realization of delay consensus in the system is derived. Finally,some numerical simulations are given to illustrate the effectiveness and feasibility of the theoretical results.

Key words: leader-follow;multi-agent system;delay;consensus

中图分类号: 

  • O231
[1] CHU Tianguang,WANG Long,CHEN Tongwen. Self-organized motion in class of anisotropic swarm: convergence vs oscillation[C]//Proceeding of the 2005 American Control Conference. Piscataway, NJ: IEEE press, 2005: 3474-3479. DOI:10.1109/ACC.2005.1470510.
[2] LIU Bo,CHU Tianguang,WANG Long,et al.Collection motion of a class of social foraging swarms[J]. Chaos,Solitons and Fractals,2008,38(1): 277-292. DOI:10.1016/j.chaos.2006.11.021.
[3] MU Shumei,CHU Tianguang,WANG Long. Coordinated collective motion in a motile particle group with a leader[J]. Physica A: Statistical Mechanics and Its Applications,2005,351(2/3/4): 211-226. DOI:10.1016/j.physa.2004.12.054.
[4] OLFATI-SABER R. Flocking for multi-agent dynamic systems:algorithms and theory[J]. IEEE Translations on Automatic Control,2006,51(3): 410-420. DOI:10.1109/TAC.2005.864190.
[5] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory and Applications,2007,1(2): 505-512. DOI:10.1049/iet-cta:20050401.
[6] SUN Yuangong,WANG Long. Consensus of multi-agent systems in directed network with nonuniform time-varying delays[J]. IEEE Transactions on Automatic Control,2009,54(7):1607-1613. DOI:10.1109/TAC.2009.2017963.
[7] OLFATI-SABER R,MURRAY R M. Consensus problems in network of agent with switching topology and time-delays[J]. IEEE Transactions on Automatic Control,2004,49(9): 1520-1533. DOI:10.1109/TAC.2004.834113.
[8] ZHANG Ya,TIAN Yuping. Consensus-based distributed estimation in homogeneous sensor networks[C]//2014 11th IEEE International Conference on control and Automation. Piscataway,NJ:IEEE Press,2014:1-6. DOI:10.1109/ICCA.2014.6870886.
[9] ZHANG Fan,ZHANG Shijie,ZHANG Yingchun,et al.Consensus-based distributed control of multi-agent systems[C]//2010 First International Conference on Pervasive Computing, Signal Processing and Applications. Piscataway,NJ:IEEE Press,2010: 216-219. DOI:10.1109/PCSPA.2010.60.
[10] LI Zhongkui,LIU Xiangdong,REN Wei,et al.Consensus control of linear multi-agent systems with distributed adaptive protocols[C]//2012 American Control Conference. Piscataway,NJ:IEEE Press,2012: 1573-1578. DOI:10.1109/ACC.2012.6314760.
[11] LI Zhongkui,REN Wei,LIU Xiangdong,et al.Consensus of Multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols[J]. IEEE Transactions on Automatic control,2013,58(7): 1786-1791. DOI:10.1109/TAC.2012.2235715.
[12] YU Wenwu,REN Wei,ZHENG Weixing,et al.Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics[J]. Automatica,2013,49(7): 2107-2115. DOI:10.1016/j.antomatica.2013.03.005.
[13] MEI Jie,REN Wei,CHEN Jie,et al. Consensus of linear multi-agent systems with fully distributed control gains under a general directed graph[C]//2014 IEEE 53rd Annual Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2014:2993-2998. DOI:10.1109/CDC.2014.7039849.
[14] ZHANG Hua,ZHOU Jin. Distributed impulsive consensus for second-order multi-agent systems with input delays[J]. IET Control Theory and Applications,2013,7(16): 1978-1983. DOI:10.1049/iet-cta.2013.0389.
[15] LUO Xiaoyuan,HAN Nani, GUAN Xinping. Leader-following formation control of multi-agent networks based on distributed observers[J]. Chinese Physics B,2010,19(10): 100202. DOI:10.1088/1674-1056/19/10/100202.
[16] PENG Ke,YANG Yupu. Leader-following consensus problem with a varying-velocity leader and time-varying delays[J]. Physica A: Statistical Mechanics and Its Applications,2009,388(2/3): 193-208. DOI:1016/j.physa.2008.10.009.
[17] ZHU Wei,CHENG Daizhan. Leader-following consensus of second-order agents with multiple time-varying delays[J]. Automatica,2010,46(12):1994-1999. DOI:10.1016/j.automatica.2010.08.003.
[18] 谢媛艳,王毅,马忠军. 领导-跟随多智能体系统的滞后一致性[J]. 物理学报,2014,63(4):040202. DOI:10.7498/aps.63.040202.
[19] MA Zhongjun,WANG Yi,LI Xiaomei.Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics[J]. Nonlinear Dynamics,2016,83(3): 1303-1310. DOI:10.1007/s11071-015-2403-8.
[20] WANG Yi,MA Zhongjun.Lag consensus of the second-order leader-following multi-agent systems with nonlinear dynamics[J]. Neurocomputing,2016,171: 82-88. DOI:10.1016/j.neucom.2015.06.020.
[21] WANG Yi,MA Zhongjun,ZHENG Song,et al.Pinning control of lag-consensus for second-order nonlinear multiagent systems[J]. IEEE Transactions on Cybernetics, 2017, 47(8):2203-2211. DOI:10.1109/TCYB.2016.2591518.
[1] 赵金想, 陈燕雁, 覃章荣, 张超英. 一种基于化学势LBM多相流模型的改进方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 87-95.
[2] 刘佳丽,王冬翠,莫少锋,李宏周,陈真诚. 慢性吸烟者的脑静息态fMRI局部一致性研究[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 151-155.
[3] 谢光强, 章云, 李杨, 曾启杰. 基于Krause多智能体一致性模型的研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 106-113.
[4] 蒙祖强, 许珂, 周石泉. 不完备不一致决策系统的最大分布约简及计算方法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发