广西师范大学学报(自然科学版) ›› 2018, Vol. 36 ›› Issue (3): 32-40.doi: 10.16088/j.issn.1001-6600.2018.03.005

• 论文 • 上一篇    下一篇

具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统

黄开娇, 肖飞雁*   

  1. 广西师范大学数学与统计学院,广西桂林541006
  • 收稿日期:2017-10-18 出版日期:2018-07-17 发布日期:2018-07-17
  • 通讯作者: 肖飞雁(1973—),女(土家族),湖南张家界人,广西师范大学副教授,博士。 E-mail:fyxiao@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11301099,11461008); 广西学位与研究生教育改革课题(JGY2017019)

A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response

HUANG Kaijiao, XIAO Feiyan*   

  1. College of Mathematics and Statistics, Guangxi Normal University,Guilin Guangxi 541006,China
  • Received:2017-10-18 Online:2018-07-17 Published:2018-07-17

摘要: 基于一类具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统的基础上,考虑2个噪声源复杂的耦合形式,从而建立了本文所要研究的系统。通过构建Lyapunov函数和停时技巧证明了该系统存在唯一的全局正解。在此基础上,进一步证明这个解是随机最终有界的。最后,给出全局随机渐近稳定性的充分条件,通过Matlab软件利用Milstein方法进行数值实验,验证关于全局随机渐近稳定性的相关结论。

关键词: Beddington-DeAngelis型功能性反应, 白噪声, 全局随机渐近稳定性

Abstract: Based on a stochastic Beddington-DeAngelis predator-prey system with Beddington-DeAngelis functional response,taking the complex coupled mode of two noise sources into account, a more complex system is investigated in this paper. Using the construction of Lyapunov functions and stopping time technique,the existence of global unique positive solution is obtained. Consequently, it is shown that the solution of the system is stochastically ultimate bounded. Finally,some sufficient conditions of stochastically global asymptotic stability are established, numerical experiments are conducted based on Matlab and Milstein method to verify the main conclusions of the stochastically global asymptotic stability.

Key words: Beddington-DeAngelis functional response, white noise, stochastically global asymptotic stabilit

中图分类号: 

  • O175
[1] BEDDINGTON J R.Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology,1975,44(1):331-340. DOI:10.2307/3866.
[2] ZENG Zhijun, FAN Meng.Study on a non-autonomous predator-prey system with Beddington-DeAngelis functional response[J]. Mathematical and Computer Modelling, 2008, 48(11/12):1755-1764. DOI:10.1016/j.mcm.2008.05.052.
[3] 许生虎,伏升茂.带Beddington-DeAngelis功能反应项的捕食者-食饵扩散模型的稳定性[J].应用数学,2008,21(2):345-353.
[4] 王克. 随机生物数学模型[M]. 北京:科学出版社,2010.
[5] 刘显清. 随机生物种群系统的动力学性质分析[D]. 成都:电子科技大学, 2014.
[6] 柳晓燕. 一类食饵相互合作的具Beddington-DeAngelis功能反应的随机捕食系统的动力学性质[D]. 太原:太原理工大学, 2016.
[7] 黄开娇, 肖飞雁. 一类带Lévy噪声的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2017, 35(2):66-72.DOI:10.16088/j.issn.1001-6600.2017.02.010.
[8] LIU Meng,WANG Ke.Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1114-1121. DOI:10.1016/j.cnsns.2010.06.015.
[9] 刘显清, 钟守铭, 项丽江. 具有Crowley-Martin型功能反应的随机捕食-被捕食系统的稳定性[J]. 西南科技大学学报, 2014,29(1):82-86. DOI:10.3969/j.issn.1671-8755.2014.01.018.
[10] 牛嗣永, 靳艳飞. 一类随机Harrison型捕食与被捕食系统的稳定性分析[J]. 动力学与控制学报, 2016, 14(3):276-282. DOI:10.6052/1672-6553-2015-022.
[11] MAO Xuerong.Stochastic differential equations and their applications[M].Chichester:Horwood Publishing Limited,1997:51-59.
[12] MAO Xuerong,YUAN Chenggui,ZOU Jiezhong.Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications,2005,304(1):296-320. DOI:10.1016/j.jmaa.2004.09.027.
[13] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations[J]. Siam Review,2001,43(3):525-546. DOI:10.1137/S0036144500378302.
[1] 焦萌倩, 彭如月, 黄文韬, 蒋贵荣. 外激和参激作用下的三角翼飞行器滚转运动的随机响应[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 34-41.
[2] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发