广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 210-221.doi: 10.16088/j.issn.1001-6600.2020091401

• 研究论文 • 上一篇    

基于响应面法优化污水厂脱氮工艺研究

肖飞, 董文明, 王维红*   

  1. 新疆农业大学 水利与土木工程学院,新疆 乌鲁木齐 830052
  • 收稿日期:2020-09-14 修回日期:2020-10-23 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 王维红(1967—),女,新疆奇台人,新疆农业大学教授。E-mail:2209319288@qq.com
  • 基金资助:
    国家自然科学基金(51968071)

Optimization of Wastewater Containing Nitrogen in Wastewater Treatment Plant Based on Response Surface Methodology

XIAO Fei, DONG Wenming, WANG Weihong*   

  1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
  • Received:2020-09-14 Revised:2020-10-23 Online:2021-09-25 Published:2021-10-19

摘要: 以新疆某联合式污水厂Ⅱ期脱氮运行工艺为研究对象,采用响应面法(RSM),研究污水进水水质和排泥量、投药量、污泥回流比等对出水总氮(TN)的影响,优化其运行参数。实验结果表明,从出水水质看,进水的碳氮质量比(C/N)、碳磷质量比(C/P)和有机负荷率(F/M)分别为8.00~9.00、55.00~60.00和0.09~0.10 d-1时,利于系统的硝化还原;排泥量、投药量和内回流比(R)分别为0.165~0.170 kg/m3、14.00~16.00 mg/L和43.00%~45.00%时,系统脱氮效果较好,结合氮损转移的数学模型可知,进水水质C/N和F/M对系统负荷的影响较大。由此可见,各影响因素处于最优范围时,有助于优化污水厂脱硝单元对废水中总氮的去除。

关键词: 联合式污水厂, 响应面法, 氮平衡模型, 总氮去除率

Abstract: Taking the phase II denitrification operation process of a joint sewage plant in Xinjiang as the research subjects, the response surface method (RSM) was applied to study the influence of sewage influent quality, sludge discharge amount, dosage, sludge reflux ratio, etc. on effluent total nitrogen (TN) and optimize its operating parameters. The experimental results showed that, from the perspective of effluent water quality, the optimal ranges of the influent carbon-nitrogen ratio (C/N), carbon-phosphorus ratio (C/P) and organic load (F/M) were 8.00-9.00, 55.00-60.00 and 0.09-0.10 d-1, respectively, which is conducive to the nitrification reduction of the system; under the additional factors, the optimal ranges for the amount of sludge, dosage and internal reflux ratio (R) were 0.165-0.170 kg/m3, 14.00-16.00 mg/L and 43.00%-45.00%, respectively, with the best denitrification effect of system. Combined with the mathematical model of nitrogen loss and transfer, it is known that the quality factors of effluent water C/N and F/M had a greater impact on the system load. Therefore, it is helpful to optimize the removal effect of total nitrogen in waste-water by the denitrification unit of the sewage plant when the various influencing factors are kept in the optimal range.

Key words: combined sewage plant, response surface method, nitrogen balance model, total nitrogen removal rate

中图分类号: 

  • X703
[1] 周慧华. 城市污水处理厂A2/O运行问题分析及解决方法[J]. 水处理技术, 2014, 40(7): 129-133.
[2] HUI C, GUO X X, SUN P F, et al. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption[J]. Bioresource Technology, 2018, 248(Part B): 146-152.
[3] SUN Z Y, LV Y K, LIU Y X, et al. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp.S1[J]. Bioresource Technology, 2016, 220: 142-150.
[4] 吕冉, 李彬, 肖盈, 等. 铁对废水微生物脱氮的影响研究进展[J]. 化工进展, 2020, 39(2): 709-719.
[5] AHN Y H. Sustainable nitrogen elimination biotechnologies: A review[J]. Process Biochemistry, 2006, 41(8): 1709-1721.
[6] JEFFERSON B, BURGESS J E, PICHON A, et al. Nutrient addition to enhance biological treatment of greywater[J]. Water Research, 2001, 35(11): 2702-2710.
[7] REN L F, NI S Q, LIU C, et al. Effect of zero-valent iron on the start-up performance of anaerobic ammonium oxidation (anammox) process[J]. Environmental Science and Pollution Research, 2015, 22(4): 2925-2934.
[8] LU J S, LIAN T T, SU J F. Effect of zero-valent iron on biological denitrification in the autotrophic denitrification system[J]. Research on Chemical Intermediates, 2018, 44(10): 6011-6022.
[9] PINTATHONG P, RICHARDSON D J, SPI RO S,et al. Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond[J]. Electronic Journal of Biotechnology, 2009, 12(2): 1-11.
[10] 王秀蘅, 任南琪, 王爱杰, 等. 铁锰离子对硝化反应的影响效应研究[J]. 哈尔滨工业大学学报, 2003,35(1): 122-125.
[11] 张怡萍, 赵泉林, 崔立莉, 等. 零价铁在污水脱氮除磷方面的研究进展[J]. 工业水处理, 2016, 36(12): 22-26.
[12] 韩微, 雷志超, 韩蕊敏, 等. 响应面法优化实际污水厂的除磷过程[J]. 中国环境科学, 2018, 38(8): 2968-2973.
[13] LUO X X, SU J F, SHAO P H, et al. Efficient autotrophic denitrification performance through integrating the bio-oxidation of Fe(Ⅱ) and Mn(Ⅱ)[J]. Chemical Engineering Journal, 2018, 348: 669-677.
[14] ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548.
[15] 郭影仪, 刘玉玲. 环境监测中常用的质控方法及其应用[J]. 环境技术, 2005,24(3): 21-23.
[16] BOX G E P.The exploration and exploitation of response surfaces: some general considerations and examples[J].Biometrics, 1954, 10(1): 16-60.
[17] VEMBU V, GANESAN G. Heat treatment optimization for tensile properties of 8011Al/15% SiCp metal matrix composite using response surface methodology[J]. Defence Technology, 2015, 11(4): 390-395.
[18] 金鹏康, 宋利, 任武昂. 城市污水处理过程中不同形态氮类营养物的转化特性[J]. 环境工程学报, 2015, 9(9): 4193-4198.
[19] SHE Z L, ZHAO L T, ZHANG X L, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215.
[20] 郑怀礼, 焦世珺, 邓晓莉, 等. 响应面法优化聚磷硫酸铁的制备及其应用[J]. 环境工程学报, 2012, 6(1): 9-14.
[21] 何雯茵, 郭诺玮, 童屿, 等. 响应面法优化污水处理厂化学强化除磷工艺[J]. 给水排水, 2019, 55(s1): 190-193.
[22] 都叶奇, 于德爽, 甄建园, 等. 进水C/N对SNEDPR系统脱氮除磷的影响[J]. 环境科学, 2019, 40(2): 816-822.
[23] 侯凯, 杨咪, 钱会, 等. 黄河宁夏段氨氮、总磷及化学需氧量环境背景值研究[J]. 灌溉排水学报, 2017, 36(8): 65-71.
[24] 甄建园, 于德爽, 王晓霞, 等. 进水C/P对SNEDPR系统脱氮除磷性能的影响[J]. 环境科学, 2019, 40(1): 343-351.
[25] 王海东, 王淑莹, 彭永臻. 进水负荷对硝化菌与异养菌竞争关系的影响[J]. 中国给水排水, 2006, 22(23): 26-29.
[26] 潘玉瑾, 刘芳, 孟爽, 等. 好氧反硝化菌P. chengduensis ZPQ2的筛选及其反硝化条件优化[J]. 环境工程, 2016, 34(1): 41-46.
[27] 邵宇琪, 黄显怀, 李卫华. Fe2+对低碳氮比污水脱氮性能及微生物种群影响研究[J]. 工业用水与废水, 2020, 51(2): 17-21.
[28] 吕娟. NO-2-N、MLSS对反硝化脱氮除磷的影响[J]. 水资源与水工程学报, 2014, 25(5): 207-210.
[29] 刘春, 王聪聪, 刘颖, 等. 生物膜反应器-单宁酸铁处理低C/N废水的脱氮性能[J]. 中国环境科学, 2019, 39(5): 1993-1999.
[30] 陆佳, 刘永军, 刘喆, 等. 有机负荷对污泥胞外聚合物分泌特性及颗粒形成的影响[J]. 化工进展, 2018, 37(4): 1616-1622.
[31] 刘小朋, 王建芳, 钱飞跃, 等. 提高有机负荷对好氧颗粒污泥形成与稳定过程的影响[J]. 环境科学, 2015, 36(9): 3352-3357.
[32] 王茹, 刘梦瑜, 刘冰茵, 等. 共基质模式下铁盐脱氮反应器的运行性能及微生物学特征[J]. 环境科学, 2019, 40(12): 5446-5455.
[33] 唐朝春, 许荣明. 化学法处理氨氮废水研究进展[J]. 应用化工, 2019, 48(4): 878-882.
[1] 叶菊,孙立卿,吉守祥. 响应面法优化蓝花荆芥中总黄酮提取工艺[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 62-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 温玉卓, 唐胜达, 邓国和. 随机环境下具有阈值分红策略的风险过程的破产时间分析[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 56 -62 .
[2] 俞春强, 邓方舟, 张显全, 唐振军, 陈艳, 何南. 一种基于多预测值分类的可逆信息隐藏算法[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 24 -32 .
[3] 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27 -33 .
[4] 沙贝贝, 谢丽聪. 一种基于频繁项集的搜索引擎聚类浏览算法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 151 -155 .
[5] 苏诚, 陈文娜, 周玲, 黄冬梅. 面向海洋空间数据集成的多Agent任务分配机制[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 205 -209 .
[6] 卫银虎, 庞桂喜, 吴娇, 谢光明. Q(K G)上的不变高斯扩张[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 55 -57 .
[7] 沈泽豪, 叶中行. 期货公司客户风险管理的模糊聚类分析[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 101 -104 .
[8] 丁磊, 王浩, 方宝富, 张权益. 基于Fast Marching方法的多机器人追捕算法[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 115 -119 .
[9] 王胜军, 窦井波. Greiner算子在R2n+1上的Poincaré不等式及Hardy-Sobolev不等式[J]. 广西师范大学学报(自然科学版), 2012, 30(1): 29 -34 .
[10] 崔永君, 杨善朝, 梁丹. LNQD样本最近邻密度估计的相合性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 59 -65 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发