广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (5): 71-77.doi: 10.16088/j.issn.1001-6600.2020.05.009

• • 上一篇    下一篇

广豆根内生真菌Xylaria sp. GDGJ-368代谢产物研究

覃玉月1,2, 刘晓波1,2, 徐照隆1,2, 莫土香1,2, 李俊1,2, 杨瑞云1,2*   

  1. 1.广西师范大学化学与药学学院, 广西桂林541004;
    2.广西师范大学 省部共建药用资源化学与药物分子工程国家重点实验室, 广西桂林541004
  • 收稿日期:2019-09-19 出版日期:2020-09-25 发布日期:2020-10-09
  • 通讯作者: 杨瑞云(1978—), 女, 广西桂林人, 广西师范大学研究员, 博士。E-mail: yang_rui_yun@163.com
  • 基金资助:
    国家自然科学基金(21762007); 广西自然科学基金(2018GXNSFAA281169); 药用资源化学与药物分子工程国家重点实验室资助项目(CMEMR2018-C29)

Secondary Metabolites of Endophytic Fungus Xylaria sp. GDGJ-368 from Sophora tonkinensis

QIN Yuyue1,2, LIU Xiaobo1,2, XU Zhaolong1,2, MO Tuxiang1,2, LI Jun1,2, YANG Ruiyun1,2*   

  1. 1. College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2019-09-19 Online:2020-09-25 Published:2020-10-09

摘要: 对真菌GDGJ-368代谢产物的化学成分进行研究,为进一步明确广豆根内生真菌中代谢产物的特点提供实验依据,通过柱层析分离技术,从广豆根植物内生真菌GDGJ-368代谢产物中分离得到7个化合物,通过核磁波谱技术确定化合物的结构。实验结果表明:7个化合物分别为5-carboxylmellein (1)、diaporthein B (2)、piliformic (3)、cytochalasin C (4)、cytochalasin D (5)、(22E)-ergosta-6, 22-diene-3β, 5β, 8α-triol (6)、(22E,24R)-5α,8α-过氧化麦角甾-6,22-二烯-3β-醇 (7)。其中化合物2为首次从炭角菌属中分离得到,化合物4和5为首次从槐属植物内生真菌中分离得到。

关键词: 广豆根, 内生真菌, Xylaria sp., GDGJ-368, 代谢产物

Abstract: In order to provide experimental basis for further research on endophytic fungi from Sophora tonkinensis, the chemical compounds of the metabolites of GDGJ-368 had been studied. Seven compounds had been isolated from the metabolites through column chromatography, and their structures were elucidated by NMR spectroscopy. The results showed that the structures of the compounds were 5-carboxylmellein (1), diaporthein B (2), piliformic (3), cytochalasin C (4), cytochalasin D (5), (22E)-ergosta-6, 22-diene-3β, 5β, 8α-triol (6) and (22E, 24R) -5α, 8α-epidioxy-24-methyl-cholesta-6, 22-diene-3β-ol (7). Compound 2 was isolated from Xylaria sp. for the first time, and compounds 4 and 5 were isolated from the fungi which were isolated from the plants of the genus Sophora firstly.

Key words: Sophora tonkinensis, endophytic fungi, Xylaria sp., GDGJ-368, metabolite

中图分类号: 

  • O629.9
[1] KONIG G M, WRIGHT A D, AUST H J, et al. Geniculol, a new biologically active diterpene from the endophytic fungus Geniculosporium sp.1[J] Journal of Natural Products, 1999, 62(1): 155-157. DOI:10.1021/np9802670.
[2] STROBEL G, DAISY B. Bioprospecting for microbial endophytes and their natural products[J] Microbiology and Molecular Biology Reviews, 2003, 67(4): 491-502. DOI:10.1128/MMBR.67.4.491-502.2003.
[3] OUYANG J K, MAO Z L, GUO H, et al. Mollicellins O-R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10[J]. Molecules, 2018, 23(12): 3218. DOI:10.3390/molecules23123218.
[4] SHAO C L, WU H X, WANG C Y, et al. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus[J]. Journal of Natural Products, 2011, 74(4): 629-633. DOI:10.1021/np100641b.
[5] HOU X M, LIANG T M, GUO Z Y, et al. Discovery, absolute assignments, and total synthesis of asperversiamides A-C and their potent activity against Mycobacterium marinum[J]. Chemical Communications, 2019, 55: 1104-1107. DOI:10.1039/C8CC09347D.
[6] HOU X M, LI Y Y, SHI Y W, et al. Integrating molecular networking and 1H NMR to target the isolation of chrysogeamides from a library of marine-derived Penicillium fungi[J]. Journal of Organic Chemistry, 2019, 84(3): 1228-1237.
[7] 高聪, 罗俊, 刘霞, 等. 炭角菌属真菌化学成分与生物活性研究进展[J]. 菌物学报, 2016, 35(7): 767-781.DOI:10.13346/j.mycosystema.150061.
[8] ZHENG N, YAO F H, LIANG X F, et al. A new phthalide from the endophytic fungus Xylaria sp. GDG-102[J]. Natural Product Research, 2017, 32(7): 755-760.
[9] 毛俐, 刘丽敏, 刘延成, 等. 苦参碱 Fe(Ⅲ)化合物的合成和抗肿瘤活性[J] 广西师范大学学报(自然科学版), 2008, 26(2): 60-63. DOI:10.16088/j.issn.1001-6600.2008.02.019.
[10] AHN J M, KIM Y M, CHAE H S, et al. Prenylated flavonoids from the roots and rhizomes of Sophora tonkinensis and their effects on the expression of inflammatory mediators and proprotein convertase subtilisin/kexin type 9[J]. Journal of Natural Products, 2019, 82(2): 309-317. DOI:10.1021/acs.jnatprod.8b00748.
[11] PAN Q M, LI Y H, HUA J, et al. Antiviral matrine-type alkaloids from the rhizomes of Sophora tonkinensis[J].Journal of Natural Products, 2015, 78(7): 1683-1688. DOI:10.1021/acs.jnatprod.5600325.
[12] XU W F, HOU X M, YAO F H, et al. Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102)[J]. Scientific Reports, 2017, 7(1): 6937. DOI:10.1038/s41598-017-07331-4.
[13] QIN Y Y, LIU X B, LIN J, et al. Two new phthalide derivatives from the endophytic fungus Penicillium vulpinum isolated from Sophora tonkinensis[J]. Natural Product Research, 2019, DOI:10.1080/14786419.2019.1636237.
[14] LIANG Y, XU W F, LIU C M, et al. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102[J]. Natural Product Research, 2019, 33(9): 1304-1309. DOI:10.1080/14786419.2018.1472597.
[15] 徐伟锋, 姚飞华, 梁学锋, 等. 广豆根内生真菌GDG-180代谢产物研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 58-61. DOI:10.16088/j.issn.1001-6600.2017.01.010.
[16] CHEN G Y, LIN Y C, VRIJMOED L L P, et al. A new isochroman from the marine endophytic fungus 1893#[J]. Chemistry of Natural Compounds, 2006, 42(2): 138-141. DOI:10.1007/s10600-006-0062-1.
[17] PONGCHAROEN W, RUKACHAISIRIKUL V, PHONGPAICHIT S, et al. Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44[J]. Journal of Natural Products, 2006, 69(5): 856-858. DOI:10.1012/np0600649.
[18] 杨建香,邱声祥,佘志刚,等. 南海红树林内生真菌 Gx-5 代谢产物研究[J]. 化工技术与开发, 2013, 42(3): 1-3.
[19] OKOYE F, NWORU C, DEBBAB A, et al. Two new cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava leaves[J]. Phytochemistry Letters, 2015, 14: 51-55. DOI:10.1016/j.phytol.2015.09.004.
[20] EDWARDS R L, MAITLAND D, WHALLEY A. Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill[J]. Journal of the Chemical Society, Perkin Transactions 1, 1989, 1: 57-65. DOI:10.1039/p19890000057.
[21] XU H, FANG W S, CHEN X G, et al. Cytochalasin D from Hypocrella Bambusae[J]. Journal of Asian Natural Products Research, 2001, 3(2): 151-155. DOI:10.1088/10286020108041383.
[22] SONG L, WANG X F, WU Y, et al. Chemical constituents from the linseed meal[J]. Fitoterapia, 2014, 97: 15-22. DOI:10.1016/j.fitote.2014.05.008.
[23] 刘桃芳,汤华,李玲,等. 中国南海紫柳珊瑚中过氧化甾醇类化学成分的研究[J]. 第二军医大学学报, 2011, 32(5): 469-472.
[24] ALBRATTY M, EL-SHARKAWY K, ALAM S. Synthesis and antitumor activity of some novel thiophene,pyrimidine,coumarin,pyrazole and pyridine derivatives[J]. Acta Pharmacologica, 2017, 67(1): 15-33.
[25] VESELINOVIĆ J B, MATEJIĆ J S, VESELINOVIĆ A M, et al. Coumarin structure as a lead scaffold for antibacterial agents-molecular docking study[J]. Biologica Nyssana, 2016, 7(2): 167-170.
[26] KAMAUCHI H, NOJI M, KINOSHITA K, et al. Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus[J]. Tetrahedron, 2018, 74(23): 2846-2856.
[27] JORGE E G, RAYAR A R, BARIGYE S B, et al. Development of an in silico model of DPPH·free radical scavenging capacity: prediction of antioxidant activity of coumarin type compounds[J]. International Journal of Molecular Sciences, 2016, 17(6): 881.
[28] YAN B C, WANG W G, HU D B, et al. Phomopchalasins A and B, two cytochalasans with polycyclic-fused skeletons from the endophytic fungus Phomopsis sp. shj2[J]. Organic Letters, 2016, 18(5): 1108-1111.
[29] PANG X, ZHAO J Y, FANG X M, et al. Metabolites from the plant endophytic fungus Aspergillus sp. CPCC 400735 and their anti-HIV activities[J]. Journal of Natural Products, 2017, 80(10): 2595-2601.
[30] KIMA E L, LI J L, DANG H T, et al. Cytotoxic cytochalasins from the endozoic fungus Phoma sp. of the giant jellyfish Nemopilema nomurai[J]. Bioorganic and Medicinal Chemistry Letters, 2012, 22(9): 3126-3129.
[1] 徐伟锋,姚飞华,梁学锋,郑娜,杨瑞云,李俊. 广豆根内生真菌GDG-180代谢产物研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 58-61.
[2] 周德雄, 王歆竹, 徐伟峰, 杨瑞云, 邵长伦, 李俊. 短指软珊瑚Sinularia sp.内生真菌Ta31-2代谢产物研究(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 91-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞琳娜, 邱燕燕, 卢家宽. p-幂零群的若干充分条件[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 64 -66 .
[2] 许伦辉, 陈凯勋. 基于改进萤火虫算法优化BP神经网络的路网速度分布预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 1 -8 .
[3] 李昭梅, 李文琳, 孟安欣, 赵振池, 覃永富, 蓝海会, 卢慧金, 陈丽莎, 梁维刚, 沈洪涛. 古代字画加速器质谱14C测年研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 38 -43 .
[4] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188 -193 .
[5] 韩博文. 考虑实时需求的需求响应式公交调度方法研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 9 -20 .
[6] 吴娟,朱宏阳,梅平,陈武,李中宝. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120 -131 .
[7] 杜雪松,林勇,梁国琨,黄姻,宾石玉,陈忠,覃俊奇,赵怡. 两种罗非鱼的耐寒性能比较[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 174 -179 .
[8] 李飞羽, 翁小雄, 姚树申. 基于乘客群体出行时间间隔的标度律研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 1 -9 .
[9] 项琴琴, 廖志贤, 李廷会, 蒋品群, 黄国现. 电网随机扰动下的光伏微网逆变器建模及控制研究[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 19 -25 .
[10] 赵鑫, 宋英强, 胡月明, 刘轶伦, 朱阿兴. 基于多源开放数据的城乡居民点空间布局优化[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 26 -40 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发