|
广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (1): 80-88.doi: 10.16088/j.issn.1001-6600.2019.01.009
王祺1, 邱家辉1, 阮彤1, 高大启1*, 高炬2
WANG Qi1,QIU Jiahui1,RUAN Tong1,GAO Daqi1*,GAO Ju2
摘要: 得益于医疗信息化的不断推进,医院已积累了大量的电子病历记录。然而,这些病历记录大多以自然语言的形式存在,无法为计算机所“理解”,也就无法对其做进一步的处理与挖掘。由此,对病历文本进行结构化研究,识别出病历实体间的语义关系,便显得尤为重要。本文针对临床语义关系识别任务,提出循环胶囊网络模型,使用分段循环神经网络来捕捉两实体及其上下文信息,并使用胶囊网络来进行最终的关系分类。实验表明,本文提出的方法较现有监督学习方法取得了更好的识别效果(F1-score为96.51%),证明了本文方法的优越性。
中图分类号:
[1] GUNTER T D,TERRY N P.The emergence of national electronic health record architectures in the United States and Australia:models,costs,and questions[J].Journal of Medical Internet Research,2005,7(1):e3.DOI:10.2196/jmir.7.1.e3. [2] ZELENKO D,AONE C,RICHARDELLA A.Kernel methods for relation extraction[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing:Volume 10.Stroudsburg,PA:Association for Computational Linguistics, 2002:71-78.DOI:10.3115/1118693.1118703. [3] ZHAO Shubin,GRISHMAN R.Extracting relations with integrated information using kernel methods[C]//Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics.Stroudsburg,PA:Association for Computational Linguistics,2005:419-426.DOI:10.3115/1219840.1219892. [4] SOCHER R,HUVAL B,MANNING C D,et al.Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.Stroudsburg,PA:Association for Computational Linguistics,2012:1201-1211. [5] ZENG Daojian,LIU Kang,LAI Siwei,et al.Relation classification via convolutional deep neural network[C]//Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg,PA:Association for Computational Linguistics,2014: 2335-2344. [6] NGUYEN T H,GRISHMAN R.Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2015:39-48.DOI:10.3115/v1/W15-1506. [7] ZHANG Dongxu,WANG Dong.Relation classification via recurrent neural network[EB/OL].(2015-08-05)[2018-09-27]. https://arxiv.org/abs/1508.01006. [8] ZHOU Peng,SHI Wei,TIAN Jun,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics:Vol.2 Short Papers.Stroudsburg,PA:Association for Computational Linguistics,2016:207-212.DOI:10.18653/v1/P16-2034. [9] GUPTA S,MANNING C D.Improved pattern learning for bootstrapped entity extraction[C]//Proceedings of the Eighteenth Conference on Computational Natural Language Learning.Stroudsburg,PA:Association for Computational Linguistics,2014:98-108.DOI:10.3115/v1/W14-1611. [10] LIN Yankai,SHEN Shiqi,LIU Zhiyuan,et al.Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics:Vol.1 Long Papers. Stroudsburg,PA:Association for Computational Linguistics,2016:2124-2133.DOI:10.18653/v1/P16-1200. [11] JI Guoliang,LIU Kang,HE Shizhu,et al.Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2017:3060-3066. [12] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems 30.Red Hook,NY:Curran Associates Inc,2017:3856-3866. [13] MILLER S,FOX H,RAMSHAW L,et al.A novel use of statistical parsing to extract information from text[C]//Proceedings of the 1st North American Chapter of the Association for Computational Linguistics Conference. Stroudsburg,PA:Association for Computational Linguistics,2000:226-233. [14] KAMBHATLA N.Combining lexical,syntactic,and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions.Stroudsburg,PA: Association for Computational Linguistics,2004:22.DOI: 10.3115/1219044.1219066. [15] CULOTTA A,McCALLUM A,BETZ J.Integrating probabilistic extraction models and data mining to discover relations and patterns in text[C]//Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics.Stroudsburg,PA:Association for Computational Linguistics,2006:296-303.DOI:10.3115/1220835.1220873. [16] XU Yan,MOU Lili,LI Ge,et al.Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA: Association for Computational Linguistics,2015:1785-1794.DOI:10.18653/v1/D15-1206. [17] CARLSON A,BETTERIDGE J,KISIEL B,et al.Toward an architecture for never-ending language learning[C]//Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2010:1306- 1313. [18] RIEDEL S,YAO Limin,McCALLUM A.Modeling relations and their mentions without labeled text[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases:LNCS Volume 6323.Berlin:Springer,2010: 148-163.DOI:10.1007/978-3-642-15939-8_10. [19] HOFFMANNR,ZHANG Congle,LING Xiao,et al.Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies:Volume 1.Stroudsburg,PA:Association for Computational Linguistics,2011:541-550. [20] SURDEANU M,TIBSHIRANI J,NALLAPATI R,et al.Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.Stroudsburg,PA:Association for Computational Linguistics,2012:455-465. [21] ZENG Daojian,LIU Kang,CHEN Yubo,et al.Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2015:1753-1762.DOI:10.18653/v1/D15-1203. [22] SINGH S,RIEDEL S,MARTIN B,et al.Joint inference of entities, relations, and coreference[C]//Proceedings of the 2013 Workshop on Automated Knowledge Base Construction.New York,NY:ACM Press,2013:1-6.DOI:10.1145/ 2509558.2509559. [23] MIWA M,SASAKI Y.Modeling joint entity and relation extraction with table representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA:Association for Computational Linguistics,2014:1858-1869.DOI:10.3115/v1/D14-1200. [24] LI Qi,JI Heng.Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:Volume 1 Long Papers.Stroudsburg,PA:Association for Computational Linguistics,2014:402-412.DOI:10.3115/v1/P14-1038. [25] MIWA M,BANSAL M.End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics:Volume 1 Long Papers.Stroudsburg,PA: Association for Computational Linguistics,2016:1105-1116. [26] ZHENG Suncong,WANG Feng,BAO Hongyun,et al.Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics:Volume 1 Long Papers.Stroudsburg,PA:Association for Computational Linguistics,2017:1227-1236. [27] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.DOI: 10.1162/neco.1997.9.8.1735. [28] MIKOLOV T,CHEN Kai,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL]. (2013-01-16)[2018-09-27].https://arxiv.org/abs/1301.3781. [29] KINGMA D P,BA J L.ADAM: a method for stochastic optimization[EB/OL].(2014-12-22)[2018-09-27]. https://arxiv.org/abs/1412.6980. |
[1] | 张明宇, 赵猛, 蔡夫鸿, 梁钰, 王鑫红. 基于深度学习的波浪能发电功率预测[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 25-32. |
[2] | 李维勇, 柳斌, 张伟, 陈云芳. 一种基于深度学习的中文生成式自动摘要方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 51-63. |
[3] | 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. |
[4] | 张金磊, 罗玉玲, 付强. 基于门控循环单元神经网络的金融时间序列预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 82-89. |
[5] | 黄丽明, 陈维政, 闫宏飞, 陈翀. 基于循环神经网络和深度学习的股票预测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 13-22. |
[6] | 岳天驰, 张绍武, 杨亮, 林鸿飞, 于凯. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49. |
[7] | 余传明, 李浩男, 安璐. 基于多任务深度学习的文本情感原因分析[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 50-61. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |