广西师范大学学报(自然科学版) ›› 2012, Vol. 30 ›› Issue (3): 22-29.

• • 上一篇    下一篇

负相协样本多维边际密度的经验似然推断

秦永松, 杨翠莲   

  1. 广西师范大学数学科学学院,广西桂林541004
  • 收稿日期:2012-05-19 出版日期:2012-09-20 发布日期:2018-12-04
  • 通讯作者: 秦永松(1964—),男,湖北鄂州人,广西师范大学教授,博士。E-mail:ysqin@mailbox.gxnu.edu.cn
  • 作者简介:秦永松,男,汉族,1964年6月生,1997年毕业于中国科学技术大学,获理学博士学位,现任广西师范大学数学科学学院副院长、教授、硕士研究生导师,兼任广西师范大学应用数学研究所所长、中国现场统计研究会理事、中国现场统计研究会资源与环境分会常务理事、中国现场统计研究会生存分析分会理事等职。
  • 基金资助:
    国家自然科学基金资助项目(10971038);广西科学基金资助项目(2010GXNSFA013117)

Empirical Likelihood for Marginal Joint Probability Density Functions of a Negatively Associated Sample

QIN Yong-song, YANG Cui-lian   

  1. College of Mathematical Sciences,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2012-05-19 Online:2012-09-20 Published:2018-12-04

摘要: 研究负相协样本多维边际密度函数的经验似然置信区间的构造,证明了负相协样本多维边际密度函数的分组经验似然比统计量的极限分布为卡方分布,由此结果可构造多维边际密度函数的经验似然置信区间。

关键词: 边际密度函数, 分组经验似然, 负相协样本, 置信区间

Abstract: This paper studies the construction of confidenceintervals for the marginal joint probability density functions of a negatively associated (NA) sample by are studied using the blockwise technique.It is shows that the blockwise empiricallikelihood (EL) ratio statistic is asymptotically χ2-type distributed,which is used to obtain EL-based confidence interval for the probability densityfunctions.

Key words: marginal probability density function, blockwise empirical likelihood, negatively associated sample, confidence interval

中图分类号: 

  • O212.7
[1] ROSENBLATT M.Remarks on some nonparametric estimates of a density function[J].Ann Math Statist,1956,27:832-837.
[2] PARZEN E.On estimation of a probability density function and mode[J].Ann Math Statist,1962,33:1065-1076.
[3] NADARAJA E.On non-parameter estimates of density functions and regression curves[J].Theory Probab Appl,1965,10:186-190.
[4] SINGH R S.Improvement of some known nonparametric uniformly consistent estimators of derivatives of a density[J].Ann Statist,1977,5:394-399.
[5] SILVERMAN B W.Density Estimation for Statistics and Data Analysis[M].New York:Chapman and Hall,1986.
[6] ROBINSON P M.Nonparametric estimators for time series[J].J Time Ser Anal,1983,4:185-197.
[7] LU Zu-di.Asymptotic normality of kernel density estimators underdependence[J].Ann Inst Statist Math,2001,53:447-468.
[8] LIN Zhing-yan.On the kernel estimation of a density for dependent sample[J].Science Bull,1983,28:709-713.
[9] ROUSSAS G G.Asymptotic normality of the kernel estimate of a probabilitydensity function under association[J].Statist Probab Lett,2000,50:1-12.
[10] MASRY E.Multivariate probability density estimation for associated processes:strong con-sistency and rates[J].Statist Probab Lett,2002,58:205-219.
[11] BLOCK H W,SAVITS T H,SHARKED M.Some concepts of negative dependence[J].Ann Probab,1982,10:765-772.
[12] JOAG-DEV K,PROSCHAN F.Negative association of random variables with applica-tions[J].Ann Statist,1983,11:286-295.
[13] SU Chun,ZHAO Lin-cheng,WANG Yue-bao.Moment inequalities and week convergence for negatively associated sequences[J].Sci in China (Ser A),1997,40:172-182.
[14] HUANG Wen-tao,XU Bing.Some maximal inequalities and complete convergence of negatively associated random sequences[J].Statist Probab Lett,2002,57:183-191.
[15] MATULA P.A note on the almost sure convergence of sums of negatively dependent random variables[J].Statist Probab Lett,1992,15:209-213.
[16] LIANG Han-ying,SU Chun.Complete convergence for weighted sums ofNA sequences[J].Statist Probab Lett,1999,45:85-95.
[17] SHAO Qi-man.A comparison theorem on moment inequalities betweennegatively associated and independent random variables[J].J Theoret Probab,2000,13:343-356.
[18] ZHANG Li-xing.The weak convergence for functions of negatively associated random vari-ables[J].J Multivariate Anal,2001,78:272-298.
[19] LI Ying-xin,ZHANG Li-xing.Complete moment convergence of moving-average processes under dependence assumptions[J].Statist Probab Lett,2004,70:191-197.
[20] OWEN A B.Empirical likelihood ratio confidence intervals for a single functional[J].Biometrika,1988,75:237-249.
[21] OWEN A B.Empirical likelihood ratio confidence regions[J].Ann Statist,1990,18:90-120.
[22] CHEN Song-xi.Empirical likelihood confidence intervals for nonparametric density estimation[J].Biometrika,1996,83:329-341.
[23] KITAMURA Y.Empirical likelihood methods with weakly dependent processes[J].Ann Statist,1997,25:2084-2102.
[24] CHEN Song-xi,WONG Chiu-min.Smoothed block empirical likelihoodfor quantiles of weakly dependent processes[J].Statistica Sinica,2009,19:71-81.
[25] QIN Yong-song,LI Ying-hua,LEI Qing-zhu.Empirical likelihood for probability density functionsunder negatively associated samples[J].J Statist Plann Infer,2011,141:373-381.
[26] CAI Zong-wu,ROUSSAS G G.Berry-esseen bounds for smooth estimator of a distribution function under association[J].J Nonparametric Statist,1999,11:79-106.
[1] 卢维学, 杨世娟, 李英华. ø-混合样本下分布函数在有限点的联合渐近分布[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 67-74.
[2] 崔永君, 杨善朝, 梁丹. LNQD样本最近邻密度估计的相合性[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 59-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发