Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (4): 60-69.doi: 10.16088/j.issn.1001-6600.2016.04.010

Previous Articles     Next Articles

Photocatalytic Degradation of Tannery Wastewater by Square Flower-like Bi2WO6 under Visible Light

CHEN Yuan1,2,3,YANG Jiatian1,2,3,WEI Qingmin1,2,3,YAN Quan1,2,3,LI Zhongliang1,2,3,QIN Yingyu1,2,3   

  1. 1. Guangxi Key Laboratory for Agricultural Resources Chemistry and Efficient Utilization Cultivation Base, Yulin Normal University, Yulin Guangxi 537000;
    2. Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi, Yulin Normal University, Yulin Guangxi 537000, China;
    3. College of Chemistry and Food Science, Yulin Normal University, Yulin Guangxi 537000, China
  • Received:2016-06-23 Online:2016-07-18 Published:2018-07-18

Abstract: Using Bi(NO3)3·5H2O and Na2WO3·2H2O as raw materials, Bi2WO6 was successfully synthesized by hydrothermal method with ethylenediamine tetraacetic acid (EDTA) as the chelating agent. The properties of the as-prepared samples were investigated by XRD, SEM, Raman and UV-vis DRS tests. The as-prepared products were used to photodegrade tannery wastewater. The effects of dosage of Bi2WO6 photocatalyst, air flow rate, pH of wastewater, H2O2 dosage and the illumination intensity on the wastewater degradation were investigated in detail. The results showed that highly crystallinity square flower-like Bi2WO6 with its band gap of 2.696 eV could be obtained via a hydrothermal route assisted by EDTA. The Bi2WO6 could effectively degrade the hardly-degraded organic pollutants, and the CODcr removal rate increased significantly. The optimum conditions of treatment of tannery wastewater were natural pH value, Bi2WO6 of 2 g/L, H2O2 of 2%, amount of air of mid-range, distance of light liquid light of 11 cm, reaction time of 3.0 h. Under the optimal conditions, the decolorization rate and CODcr removal rate were 91.5% and 92.6%. The dynamic behavior of Bi2WO6 photocatalyst degrading the molasses fermentation wastewater agrees with the first-order rate dynamic equation.

Key words: Bi2WO6, hydrothermal method, tannery wastewater, decolorization rate, CODcr removal

CLC Number: 

  • TQ032.4
[1] 张涛, 任昭, 刘智峰. 制革废水处理方法综述[J]. 西部皮革, 2011, 32(4):28-32.
[2] 何秀, 程宝箴, 王小聪. 纳米二氧化钛处理制革废水的研究进展[J]. 皮革与化工, 2013, 30(2):24-27.
[3] 欧阳, 晏颖, 孙根行. 硅改性聚合氯化铁的制备及其对制革废水的处理[J]. 中国皮革, 2010, 39(9):6-9.
[4] 刘嫣潇, 付万年, 邓岩岩, 等. 混凝法处理制革综合废水的研究[J]. 工业水处理, 2007, 27(5):17-19.
[5] 隋智慧, 曹向禹, 强西怀. 氧化沟工艺及其在制革废水处理中的应用[J]. 中国皮革, 2005, 34(1):54-55.
[6] 张杰, 刘素英, 郑德明. 序批式活性污泥(SBR)法在制革生产废水处理中的应用[J]. 陕西科技大学学报, 2006, 24(3):143-145.
[7] 吕波. 生物接触氧化工艺处理制革废水[J]. 工业水处理, 2005, 25(1):75-76.
[8] 贾秋平, 韩晓辉, 李素娜. CAF 涡凹气浮—生物接触氧化工艺在制革废水处理中的应用[J]. 环境保护科学, 2003(29):20-22.
[9] 李章良, 黄建辉, 郑盛春. 超声-Fenton 联用技术深度处理制革综合废水生化出水[J]. 环境工程学报, 2013, 6(7):2038-2043.
[10] 陶如钧. 物化-水解酸化-CAST工艺处理制革废水[J]. 给水排水, 2003, 29(9):31-32.
[11] CHONG M N, JIN B, CHOW C W, et al. Recent developments in photocatalytic water treatment technology:a review[J]. Water Research, 2010, 44(10):2997-3027.
[12] 黄兵华, 张晓飞, 宋磊, 等. TiO2光催化水处理技术综述[J]. 水处理技术, 2014, 40(3):11-21.
[13] 夏宏, 杨德敏. 制革废水及其处理现状综述[J]. 皮革与化工, 2014, 31(1):25-29.
[14] 刘存海, 喻莹, 石晶. 低温法制备TiO2薄膜及其光催化处理皮革废水的研究[J]. 中国皮革, 2011, 40(21):36-40.
[15] 史亚君.纳米TiO2光催化氧化法处理制革废水[J].化工环保,2006,26(1):13-16.
[16] 程宝箴, 何秀, 丹炳阳, 等. 介孔TiO2的制备及其处理制革染色加脂废水的研究[J]. 中国皮革, 2014, 13(43):1-4.
[17] TAMAR S, PIERRE G, NICOLAS C. New insights into Bi2MO6 properties as a visible-light photocatalyst[J]. Physical Chemistry C, 2013, 117(44):22656-22666.
[18] HUANG H W, LIU K, CHEN K. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation[J]. Physical Chemistry, 2014, 118(26):14379-14387.
[19] 王静, 高晓明, 付峰, 等. Cu-Bi2WO6的制备及应用于光催化氧化含酚废水的研究[J]. 材料导报, 2012, 26(20):10-14.
[20] DING X,ZHAO K,ZHANG L Z. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions[J]. Environmental Science Technology, 2014, 48(10):5823-5831.
[21] 陈冉, 胡朝浩, 赵雯, 等. 球形Bi2WO6光催化剂的合成与性能[J]. 中国有色金属学报, 2014, 24(2):476-483.
[22] 陈 渊, 杨家添, 韦庆敏, 等. PVP辅助混合溶剂热法制备高可见光催化活性的花状Bi2WO6催化剂[J].中国有色金属学报, 2014, 24(8):2090-2099.
[23] 唐郁生, 夏金虹, 黄国银. 绒线团状Bi2WO6光催化降解亮绿SF淡黄的研究[J]. 化学研究与应用, 2014, 26(5):641-646.
[24] 朱兆文. 光催化臭氧法对化工制药废水的解毒和降解研究[J]. 化学工程与装备, 2008, 10(10):143-150.
[25] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].4版, 北京:中国环境科学出版社,2002.
[26] 陈渊, 杨家添, 谢祖芳, 等. 蛋挞状Bi2WO6催化剂的制备及其光催化性能[J]. 人工晶体学报, 2014, 42(2):380-387,393.
[27] 宋丽花, 谈国强, 夏傲, 等. 反应温度对微波水热法合成Bi2WO6粉体及光催化性能影响的研究[J]. 无机化学学报, 2011, 27(11):2133-2137.
[28] KIM D Y, KIM S J, YEO M K, et al. Synthesis of nanometer sized Bi2WO6 by a hydrothermal method and their conductivities[J]. Korean Journal of Chemical Engineering, 2009, 26(1):261-264.
[29] FU H, PAN C, ZHANG L, et al. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts[J]. Mater Res Bull, 2007, 42(2):696-706.
[30] 陈渊,杨家添,刘国聪,等. 水热法制备BiVO4及其可见光催化降解糖蜜酒精废水[J]. 环境科学学报, 2011, 31(5):971-978.
[31] LEGERINI O, OLIVEROS E, BRAUN A M. Photochemical processes for water treatment[J]. Chemical Reviews, 1993, 93(2):671-698.
[32] 宋丽花, 谈国强, 郑玉芹, 等. Bi2WO6粉体光催化剂的制备方法及研究进展[J]. 陕西科技大学学报, 2012, 30(1):122-125.
[33] 环境保护部, 国家质量技术监督检验检疫局. 制革及毛皮加工工业水污染物排放标准:GB30486-2013[S]. 北京:中国标准出版社, 2014.
[1] FANG Yue-ping, ZHOU Xun-fu, YANG Shi-yuan, WANG Hong-qiang. Synthesis of Novel 3-D Superstructure of SnO2@Carbon Nanochains Functional Materials and Application [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 178-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!