Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (4): 38-45.doi: 10.16088/j.issn.1001-6600.2016.04.006
Previous Articles Next Articles
ZHANG Junjian, LAI Tingyu, YANG Xiaowei
CLC Number:
[1] JORIAN P. Risk2: Measuring the risk in Value at Risk[J]. Financial Analysis Journal, 1996, 52(6):47-56. DOI:10.2469/faj.v52.n6.2039. [2] ARTZNER P, DELBAEN F, EBER J M, et al. Thinking coherently[J]. Risk, 1997, 10: 68-71. [3] ARTZNER P, DELBAEN F, EBER J M, et al. Coherent measures of risk[J]. Mathematical Finance, 1999, 9(3):203-228. DOI:10.1111/1467-9965.00068. [4] ROCKAFELLAR R T, URYASEV S. Conditional Value-at-Risk for general loss distributions[J]. Journal of Banking and Finance, 2002, 26(7): 1443-1471. DOI:10.1016/S0378-4266(02)00271-6. [5] PFLUG G C. Some remarks on the Value-at-Risk and the conditional Value-at-Risk[M]// URYASEV S. Probabilistic Constrained Optimization: Methodology and Applications. Dordrecht: Kluwer Academic Publisher, 2000: 272-281. DOI:10.1007/978-1-4757-3150-7_15. [6] ACERBI C, TASCHE D. Expected shortfall: A natural coherent alternative to value at risk[J]. Economic Notes, 2002, 31(2):379-388. DOI:10.1111/1468-0300.00091. [7] ACERBI C, TASCHE D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(7):1487-1503. DOI:10.1016/S0378-4266(02)00283-2. [8] 晏振. VaR和ES的调整经验似然估计[D]. 桂林: 广西师范大学, 2012. [9] OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988,75(2): 237-249. DOI:10.1093/biomet/75.2.237. [10] OWEN A B. Empirical likelihood[M]. London: Chapman and hall, 2001. [11] QIN Jin, LAWLESS J. Empirical likelihood and general eatimating equations[J]. Annals of Statistics, 1994,22(1):300-325. DOI:10.1214/aos/1176325370. [12] 张新成,张军舰,詹欢. 基于垂直密度表示的经验欧氏拟合优度检验[J]. 广西师范大学学报(自然科学版),2013,31(4):60-65. DOI:10.16088/j.issn.1001-6600.2013.04.001. [13] LAZAR N A. Bayesian empirical likelihood[J]. Biometrika, 2003, 90(2): 319-326. DOI:10.1093/biomet/90.2.319. [14] YANG Yunwen, HE Xuming. Bayeian empirical likelihood for quantile regression[J]. The Annals of Statistics, 2012, 40(2):1102-1131. DOI:10.1214/12-AOS1005. [15] RAO J N K, WU Changbao. Bayesian pseudo-empirical-likelihood intervals for complex surveys[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010, 72(4):533-544. DOI:10.1111/j.1467-9868.2010.00747.x. [16] Van der VAART A W. Asymptotic statistics[M]. Cambridge: Cambridge University Press, 1998. [17] MOLANES-L PEZ E M, Van KEILEGOM I, VERAVERBEKE N. Epirical likelihood for non-smooth criterion functions[J]. Scandinavian Journal of Statistics, 2009, 36(3):413-432. DOI:10.1111/j.1467-9469.2009.00640.x. [18] HE Xuming, SHAO Qiman. A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs[J]. The Annals of Statistics, 1996, 24(6):2608-2630. DOI:10.1214/aos/1032181172. |
[1] | LU Siyao, XU Meiping. Research on the Risk Measurement of Stock Index Basedon Mixture-Copula and ARMA-GARCH-t Models [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 93-101. |
[2] | DING Xin-yue, XU Mei-ping. Computing VaR and ES Based on the Extreme Value Theory:A Case Study of ZTE Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 76-81. |
|