Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (4): 1-8.doi: 10.16088/j.issn.1001-6600.2016.04.001

    Next Articles

Privacy Preserving Method Based on k-isomorphism and Local Randomization

GE Lina1,2, ZHANG Jing1,2 , LIU Jinhui1,2, WANG Hong1,2   

  1. 1.College of Information Science and Engineering, Guangxi University for Nationalities, Nanning Guangxi 530006,China;
    2. China-ASEAN Study Center Guangxi Science Experiment Center of Guangxi University for Nationalities, Nanning Guangxi 530006,China
  • Online:2016-07-18 Published:2018-07-18

Abstract: In the process of social network data collection and release, privacy information leakage often takes place so that social network privacy protection has aroused people’s concern. In order to solve the problem of significant data loss and poor availability of data in a single mode of social network privacy preserving method ,a k-isomorphism and locally randomized method of privacy preserving is proposed, which included the optimized k-isomorphism method and locally randomized method. The experimental results show that the proposed method in this paper could effectively resist information loss, and has good performance in measurement of harmonic mean of the shortest distance and sub-graph centrality of information within graph. It can protect user’s privacy information effectively and improve the usability of data issued, and also can effectively resist recognition attack from attacker based on background knowledge of graph structure.

Key words: social network, privacy preserving, structure information, k-isomorphism, randomization

CLC Number: 

  • TP309
[1] 刘军. 社会网络分析导论:An introduction to social network analysis[M].北京:社会科学文献出版社, 2004:1-4.
[2] CHENG J, FU A W, LIU J. K-isomorphism:privacy preserving network publication against structural attacks[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. New York:ACM, 2010:459-470.DOI:10.1145/1807167.1807218.
[3] WU Hongwei,ZHANG Jianpei,WANG Bo, et al. K+-isomorphism:privacy preserving publication against structural attacks in social networks[J]. International Journal of Advancements in Computing Technology, 2012, 4(22):154-162. DOI:10.4156/ijact.vol4.issue22.18.
[4] 孙继广. 矩阵的扰动分析[M]. 2版. 北京:科学出版社, 2001:163-190.
[5] CVETKOVIC'D M, ROWLINSON P, SIMIC S. Eigenspaces of graphs[M]. Cambridge: Cambridge University Press, 1997.
[6] 刘向宇, 王斌, 杨晓春. 社会网络数据发布隐私保护技术综述[J]. 软件学报, 2014, 25(3):576-590. DOI:10.13328/j.cnki.jos.004511.
[7] LIU Kun, TERZI E. Towards identity anonymization on graphs[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2008:93-106. DOI:10.1145/1376616.1376629.
[8] 王小号, 耿惠, 陈铁明. 基于谱约束和敏感区划分的社会网络隐私保护扰动方法[J]. 计算机应用, 2013, 33(6):1608-1611, 1614. DOI:10.3724/SP.J.1087.2013.01608.
[9] 张晓琳, 李玉峰, 刘立新, 等. 社会网络隐私保护中K-同构算法研究[J]. 微电子学与计算机, 2012, 29(5):99-103.
[10] TANG Chenxing, WANG Xiaodong. Preserving privacy in social networks against subgraph attacks[C]//2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. Piscataway,NJ:IEEE Press, 2010:154-158. DOI:10.1109/ICICISYS.2010.5658516.
[1] WANG Han, WANG Xu’an, ZHOU Neng, LIU Yudong. Blockchain-based Public Verifiable Scheme for Sharing Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 1-7.
[2] LIU Dianting, WU Lina. Domain Experts Recommendation in Social Network Basedon the LDA Theme Model of Trust [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 51-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!