Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (1): 201-215.doi: 10.16088/j.issn.1001-6600.2024022101

Previous Articles     Next Articles

Meteorological Risk Forecasting Model for Geological Disasters in Nujiang Prefecture Based on Sample Optimization and Machine Learning

ZHANG Tianxiang, WANG Yanxia, ZHANG Xueke, LIN Chuan, ZHOU Ruliang*   

  1. School of Soil and Water Conservation, Southwest Forestry University, Kunming Yunnan 650224, China
  • Received:2024-02-21 Revised:2024-04-27 Online:2025-01-05 Published:2025-02-07

Abstract: Rainfall is the main cause of geological disasters, and frequent rainfall in Yunnan Province leads to frequent geological disasters, posing a serious threat to the safety of people’s lives and property. Geological disaster meteorological risk forecasting is an effective means of disaster prevention and reduction. This study takes the high mountain canyon area of Nujiang Prefecture as an example, constructs information thresholds based on information value models, optimizes samples based on information thresholds, evaluates the susceptibility of comprehensive geological disasters in Nujiang Prefecture using machine learning models, calculates the effective rainfall coefficient of Nujiang Prefecture to establish a meteorological risk forecasting model, and verifies the accuracy of the model using historical disaster points. The results showed that the AUC values of landslide and debris flow disaster evaluation models optimized by information threshold samples were 0.97 and 0.99, respectively, with prediction accuracies of 0.93 and 0.98. The comprehensive geological disaster risk in Nujiang Prefecture was extremely high, and high-risk areas were mainly distributed along rivers and roads in the canyon. The meteorological risk warning model had a forecast hit rate of 90.91%, a missed report rate of 0, and a false alarm rate of 22.22%. The area of high-risk areas at the end of rainfall was 472.24 km2. Optimizing samples with information thresholds has greatly improved the predictive and generalization capabilities of machine learning models, and the meteorological forecast model with a decay coefficient of 0.5 has improved the accuracy of geological disaster meteorological risk forecasting. The overall research results can provide substantial support for disaster prevention and reduction work in Nujiang Prefecture and similar areas.

Key words: geological disasters, information threshold, optimized samples, machine learning, rainfall attenuation coefficient, meteorological risk forecasting

CLC Number:  P694;X43
[1] ABEDINI M, TULABI S. Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran[J]. Environmental Earth Sciences, 2018, 77(11): 405. DOI: 10.1007/s12665-018-7524-1.
[2] 易靖松,程英建,徐乙,等.基于过程降雨的红层丘陵低山区滑坡灾害气象预警阈值研究[J].水土保持通报,2024,44(2):215-222,235. DOI: 10.13961/j.cnki.stbctb.20241027.001.
[3] ZOU F, CHE E Z, LONG M Q. Quantitative assessment of geological hazard risk with different hazard indexes in mountainous areas[J]. Journal of Cleaner Production, 2023, 413: 137467. DOI: 10.1016/J.JCLEPRO.2023.137467.
[4] LI Y, YANG X Z, HU X, et al. Mechanisms of rainfall-induced landslides and interception dynamic response: a case study of the Ni Changgou landslide in Shimian, China[J]. Scientific Reports, 2024, 14(1): 1567. DOI: 10.1038/S41598-024-51419-7.
[5] MONDINI A C, GUZZETTI F, MELILLO M. Deep learning forecast of rainfall-induced shallow landslides[J]. Nature Communications, 2023, 14(1): 2466. DOI: 10.1038/S41467-023-38135-Y.
[6] PICIULLO L, CALVELLO M, CEPEDA J M. Territorial early warning systems for rainfall-induced landslides[J]. Earth-Science Reviews, 2018, 179: 228-247. DOI: 10.1016/j.earscirev.2018.02.013.
[7] 孙鹏,胡磊,胡玉乾,等.横断山区汶川县滑坡泥石流降雨致灾阈值研究[J].北京师范大学学报(自然科学版),2023,59(2):187-195. DOI: 10.12202/j.0476-0301.2021302.
[8] 马洁华,孙建奇,汪君,等.2018年夏季我国极端降水及滑坡泥石流灾害预测[J].大气科学学报,2019,42(1):93-99. DOI: 10.13878/j.cnki.dqkxxb.20181214001.
[9] 邓日朗.基于易发性和临界降雨阈值的区域滑坡预警模型研究[D].广州:广州大学,2023. DOI: 10.27040/d.cnki.ggzdu.2023.000360.
[10] SEGONI S, ROSI A, ROSSI G, et al. Analysing the relationship between rainfalls and landslides to define a Mosaic of triggering thresholds for regional-scale warning systems[J]. Natural Hazards and Earth System Science, 2014, 14(9): 2637-2648. DOI: 10.5194/nhess-14-2637-2014.
[11] 陈悦丽,赵琳娜,王英,等.降雨型地质灾害预报方法研究进展[J].应用气象学报,2019,30(2):142-153. DOI: 10.11898/1001-7313.20190202.
[12] 李宇梅,杨寅,狄靖月,等.全国地质灾害气象风险精细化网格预报方法及其应用[J].气象,2020,46(10):1310-1319. DOI: 10.7519/j.issn.1000-0526.2020.10.005.
[13] 王裕琴,杨迎冬,周翠琼,等.基于GIS空间分析技术的云南省地质灾害气象风险预警系统[J].中国地质灾害与防治学报,2015,26(1):134-137,144. DOI: 10.16031/j.cnki.issn.1003-8035.2015.01.024.
[14] 胡娟,闵颖,李华宏,等.云南省地质灾害精细化气象风险预警模型优化研究[J].灾害学,2016,31(4):110-115. DOI: 10.3969/j.issn.1000-811X.2016.04.019.
[15] 李华宏.云南省地质灾害气象风险精细化预警技术研究及应用[M].北京:气象出版社,2016.
[16] 杨竹云,许彦艳,李华宏,等.云南省地质灾害气象风险预警技术改进及应用检验[J].灾害学,2024,39(2):85-91. DOI: 10.3969/j.issn.1000-811X.2024.02.014.
[17] LIN J H, CHEN W H, QI X H, et al. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment[J]. Journal of Cleaner Production, 2021, 309: 127077. DOI: 10.1016/j.jclepro.2021.127077.
[18] 刘汉龙,马彦彬,仉文岗.大数据技术在地质灾害防治中的应用综述[J].防灾减灾工程学报,2021,41(4):710-722. DOI: 10.13409/j.cnki.jdpme.2021.04.002.
[19] ZHAO J Q, ZHANG Q, WANG D Z, et al. Machine learning-based evaluation of susceptibility to geological hazards in the Hengduan mountains region, China[J]. International Journal of Disaster Risk Science, 2022, 13(2): 305-316. DOI: 10.1007/s13753-022-00401-w.
[20] MA Z J, MEI G. Deep learning for geological hazards analysis: data, models, applications, and opportunities[J]. Earth-Science Reviews, 2021, 223: 103858. DOI: 10.1016/j.earscirev.2021.103858.
[21] 冯显杰,李益敏,邓选伦,等.高山峡谷地区地质灾害易发性评价:以怒江州为例[J].河南理工大学学报(自然科学版),2024,43(3):70-80. DOI: 10.16186/j.cnki.1673-9787.2022040062.
[22] 李益敏,邓选伦,谢亚亚,等.基于信息量-逻辑回归模型的怒江州滑坡灾害易发性评价[J].时空信息学报,2023,30(1):77-85. DOI: 10.20117/j.jsti.202301011.
[23] 李益敏,向倩英,邓选伦,等.基于优化MaxEnt模型的怒江州滑坡易发性评价[J/OL].河南理工大学学报(自然科学版):1-11[2024-02-21].https://doi.org/10.16186/j.cnki.1673-9787.2023070010. DOI: 10.16186/j.cnki.1673-9787.2023070010.
[24] 刘润胜,郭有金.基于IOE-IV耦合模型的地质灾害易发性评价:以陕西省城固县为例[J].矿产勘查,2024,15(1):150-160. DOI: 10.20008/j.kckc.202401015.
[25] 张复金,徐曙林,王平,等.基于量化因子的地质灾害易发性评价:以重庆市綦江区为例[J].中国地质灾害与防治学报,2023,34(3):136-144. DOI: 10.16031/j.cnki.issn.1003-8035.202203042.
[26] 陈前,晏鄂川,黄少平,等.基于样本与因子优化的黄冈南部地区地质灾害易发性评价[J].地质科技通报,2020,39(2):175-185. DOI: 10.19509/j.cnki.dzkq.2020.0219.
[27] 刘铁铭,郭有金,刘艳领.基于聚类算法优化样本的地质灾害易发性评价[J].人民长江,2023,54(3):117-124. DOI: 10.16232/j.cnki.1001-4179.2023.03.018.
[28] 郭飞,赖鹏,黄发明,等.基于知识图谱的滑坡易发性评价文献综述及研究进展[J].地球科学,2024,49(5):1584-1606. DOI: 10.3799/dqkx.2023.058.
[29] 雷鸣.降雨对滑坡稳定性影响研究及预警预报[D].西安:西安工业大学,2021. DOI: 10.27391/d.cnki.gxagu.2021.000051.
[30] 陈春利,方志伟.福建省地质灾害气象预警有效降雨模型研究[J].地质力学学报,2023,29(1):99-110. DOI: 10.12090/j.issn.1006-6616.2022090.
[31] 杨迎冬,晏祥省,王宇,等.云南省地质灾害特征及形成规律研究[J].灾害学,2021,36(3):131-139. DOI: 10.3969/j.issn.1000-811X.2021.03.023.
[32] 魏苏杭.怒江州泥石流灾害预警模型及气象预警系统研究[D].昆明:云南大学,2017.
[33] 温鑫,范宣梅,陈兰,等.基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例[J].地质科技通报,2022,41(2):290-299. DOI: 10.19509/j.cnki.dzkq.2022.0054.
[34] 朱昳橙,李益敏,魏苏杭.怒江州滑坡地质灾害气象预警模型研究[J].云南大学学报(自然科学版),2016,38(4):610-619. DOI: 10.7540/j.ynu.20150810.
[35] YANG J L, DONG J W, XIAO X M, et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China[J]. Remote Sensing of Environment, 2019, 233: 111395. DOI: 10.1016/j.rse.2019.111395.
[36] 刘帅,朱杰勇,杨得虎,等.基于斜坡单元与随机森林模型的元阳县崩滑地质灾害易发性评价[J].中国地质灾害与防治学报,2023,34(4):144-150. DOI: 10.16031/j.cnki.issn.1003-8035.202207003.
[37] HANBERRY B B. Practical guide for retaining correlated climate variables and unthinned samples in species distribution modeling, using random forests[J]. Ecological Informatics, 2024, 79: 102406. DOI: 10.1016/j.ecoinf.2023.102406.
[38] CUTLER D R, EDWARDS T C, Jr BEARD K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783-2792. DOI: 10.1890/07-0539.1.
[39] 刘福臻,戴天宇,王军朝,等.耦合Random Forest算法与信息量模型的地质灾害易发性评价:以西藏自治区工布江达县为例[J].安全与环境学报,2023,23(7):2428-2438. DOI: 10.13637/j.issn.1009-6094.2022.0375.
[40] ZHANG T Y, LI Y N, WANG T, et al. Correction: evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping[J]. Geoscience Letters, 2023, 10(1): 44. DOI: 10.1186/S40562-023-00296-5.
[41] 张伟,周松林,尹仑.基于优化MaxEnt模型的高山峡谷区地质灾害易发性评价:以云南省德钦县为例[J].灾害学,2023,38(2):185-190. DOI: 10.3969/j.issn.1000-811X.2023.02.027.
[42] CROZLER M J. Landslides: causes, consequences, and environment[M]. London: Croom Helm, 1986: 185-189.
[43] 杨寅,林建,包红军.2018年地质灾害重点区域气象预警效果检验[J].中国地质灾害与防治学报,2019,30(6):135-140. DOI: 10.16031/j.cnki.issn.1003-8035.2019.06.17.
[44] 万石云,李华宏,胡娟.云南省滑坡泥石流灾害危险区划[J].灾害学,2013,28(2):60-64. DOI: 10.3969/j.issn.1000-811X.2013.02.013.
[45] 周鹏飞,刘琳,杨晋帆,等.基于机器学习的云南省蝙蝠空间分布及其危害分析[J].广西师范大学学报(自然科学版),2023,41(6):139-149. DOI: 10.16088/j.issn.1001-6600.2022121102.
[46] 刘婷婷,杨晋帆,周汝良,等.基于地理栅格变量与机器学习的松材线虫病扩散风险分析[J].浙江农林大学学报,2023,40(3):617-626. DOI: 10.11833/j.issn.2095-0756.20220470.
[47] 翟文华,王小东,吴明堂,等.基于频率比模型和随机森林模型耦合的地质灾害易发性评价[J].自然灾害学报,2023,32(6):74-82. DOI: 10.13577/j.jnd.2023.0607.
[48] 刘猛猛.顾及样本优化和空间特征的滑坡易发性分析方法[D].阜阳:辽宁工程技术大学,2023. DOI: 10.27210/d.cnki.glnju.2023.000031.
[1] GUO Yonghao, LIU Churui, SUN Zhen. Applying Metabonomics to Predict the Spoilage Bacteria in Beer Fermentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 161-170.
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[3] CHEN Gaojian, WANG Jing, LI Qianwen, YUAN Yunjing, CAO Jiachen. Data-driven Method for Automatic Machine Learning Pipeline Generation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 185-193.
[4] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57-67.
[5] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[6] ZHANG Yongsheng, ZHU Wenjun, SHI Ruoqi, DU Zhenhua, ZHANG Rui, WANG Zhi. A Confidence-guided Hybrid Android Malware DetectionSystem with Multiple Heterogeneous Algorithms [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 19-28.
[7] LIN Yue,LIU Tingzhang,WANG Zhehe. Quantity Optimization of Virtual Sample Generation with Two Kinds of Upper Bound Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 142-148.
[8] ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119-124.
[9] XIA Ning, LIN Hong-fei, YANG Zhi-hao, LI Yan-peng. Gene Mention Normalization Based on Semantic Featured Machine Learning Disambiguation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 144-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[2] LIU Changping, SONG Shuxiang, JIANG Pinqun, CEN Mingcan. Differential Passive N-path Filter Based on Switched Capacitors[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 52 -60 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .