Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (3): 50-55.doi: 10.16088/j.issn.1001-6600.2018.03.007

• Orginal Article • Previous Articles     Next Articles

Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ

HUANG Rongli*, LI Changyou, WANG Minqing   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2017-08-15 Online:2018-07-17 Published:2018-07-17

Abstract: In this paper, the Bernstein theorem for the self-expansion solution of the Lagrangian mean curvature flow in the pseudo-European space is studied. Without loss of the generality, for a class of second order ordinary differential equations such as u″=F(u-$\frac{1}{2}$tu'),u=u(t), and under certain conditions, their solutions are investigated. If u'(0)=0, and the function F is an analytic function, it is shown that the solutions of the equations are quadratic polynomials. At the same time, the classical Bernstein theorem for the solution of a class of equations is proved by using a more concise and intuitionistic method for the first time, and then the study for the self-similarity solution of the pseudo-European space Lagrangian mean curvature is developed.

Key words: mean curvature flow, analytic solution, self-similar solution, Cauchy-Kowalev-skya theorem

CLC Number: 

  • O175.7
[1] HUISKEN G.Non-parametric mean curvature evolution with boundary conditions[J].J Differential Equations,1989(77):369-378.DOI:10.1016/0022-0396(89)90149-6.
[2] ALTSCHULER S J,WU L F.Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle[J].Calculus of Variations and Partial Differential Equations,1994,2(1):101-111.DOI:10.1007/BF01234317.
[3] DING Qi,XIN Yuanlong.The rigidity theorems for Lagrangian self-shrinkers[J].Journal Für die Reine und Angewandte Mathematik,2014,2014(692):109-123.DOI:10.1515/crelle-2012-0081.
[4] CHEN Jingyi,LI Jiayu.Singularity of mean curvature flow of Lagrangian submanifolds[J]. Inventiones Mathematicae,2004,156(1):25-51.DOI:10.1007/s00222-003-0332-5.
[5] CHANG Yaling,GUO Jongshenq,KOHSAKA Y.On a two-point free boundary problem for a quasilinear parabolic equation[J].Asymptotic Analysis,2003,34(3/4): 333-358.
[6] CHERN Huahuai,GUO Jongshenq,LO Chupin.The self-similar expanding curve for the curvature flow equation[J].Proceedings of the American Mathematical Society,2003,131(10):3191-3201.
[7] HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature flow[J].Calculus of Variations and Partial Differential Equations, 2011,41(3/4):321-339.DOI:10.1007/s00526-010-0364-9.
[8] 黄荣里,李长友.一类常微分方程的伯恩斯坦定理[J].广西师范大学学报(自然科学版),2016,34(1):102-105.DOI:10.16088/j.issn.1001-6600.2016.01.015.
[9] 陈恕行. 现代偏微分方程导论[M].北京:科学出版社,2005.
[10] XU Ruiwei, ZHU Lingyun.On the rigidity theorems for Lagrangian translating solitonsinpseudo-Euclidean space III[J].Calculus of Variations and Partial Differential Equations,2015,54(3):3337-3351.DOI:10.1007/s00526-015-0905-3.
[1] HUANG Rongli, LI Changyou. On Bernstein’ Theorem to a Class of Ordinary Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!