Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 158-172.doi: 10.16088/j.issn.1001-6600.2020121101

Previous Articles     Next Articles

Pricing Forward-start Power Options with Product of Two Assets in a Stochastic Interest Rate and Jump Diffusion Model

XIE Donglin, DENG Guohe*   

  1. School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-12-11 Revised:2021-03-06 Online:2021-09-25 Published:2021-10-19

Abstract: In this paper, the pricing problem on forward-start power options with product of two assets followed jump diffusion models in a stochastic interest rate framework is considered. Using the Feynman-Kac theorem, the joint characteristic function and the Fourier inverse transformation techniques, the closed-explicit solutions of the European forward-start power options with product of two asset are obtained. Some numerical examples for the option price are implemented by the fast Fourier transform (FFT), and the validity of the proposed method is verified by Monte Carlo simulation. The changes of option price in the proposed model were compared with that of other three different models (Black-Scholes, Merton and CIR+Black-Scholes), and the sensitivity of the price of the forward-start power options with product of two assets to some main parameters were analyzed, including the power factor, jump risk factors, maturity date, the correlation coefficient, average recovery speed and long term average level of interest rate, in the proposed model. Numerical results show that the power factor, jump risk factors, maturity date, the correlation coefficient, and long term average level of interest rate have more significant effect on the option price, and average recovery speed of interest rate has some effects on the option price. These are beneficial to risk management and hedging for investors.

Key words: power option, product option, forward-start option, CIR stochastic interest rate model, Girsanov theorem, Fourier inverse transformation

CLC Number: 

  • O212.1
[1] MERTON R C. Option pricing when underlying stock return are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2): 125-144.
[2] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385-407.
[3] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654.
[4] HEYNEN R C, KAT H M. Pricing and hedging power options[J]. Financial Engineering and the Japanese Markets, 1996, 3(3): 253-261.
[5] WILIMOTT P. Derivatives: the theory and practice of financial engineering[M]. New York: John Wiley & Sons, 2000: 121-122, 235-237.
[6] ZHANG P G. Exotic options[M]. 2nd ed. 北京: 世界图书出版公司, 2009:187-193, 439-446.
[7] 郭培栋, 张寄洲. 双币种博弈期权[J]. 数学的实践与认识, 2017, 47(24): 21-29.
[8] RUBINSTEIN M. Pay now, choose later[J]. Risk, 1991, 4(2): 44-47.
[9] 杨向群, 吴奕东. 带跳的幂型支付欧式期权定价[J]. 广西师范大学学报(自然科学版), 2007, 25(3): 56-59.
[10] 苏小囡, 王文胜. 幂式期权在跳扩散模型下的定价[J]. 华东师范大学学报(自然科学版), 2011(3): 12-20, 53.
[11] 刘佳钥. 乘积期权的定价及应用[D]. 石家庄: 河北师范大学, 2018.
[12] 杨建奇, 赵守娟. 双指数跳扩散模型下远期生效期权的定价[J]. 数学的实践与认识, 2017, 47(6): 29-34.
[13] 林涵彬, 苏小囡, 王伟. 混合指数跳扩散模型下远期生效期权的定价[J]. 宁波大学学报(理工版), 2019, 32(5): 104-109.
[14] HUANG J, ZHU W, RUAN X. Fast Fouriertransform based power option pricing with stochastic interest rate, volatility, and jump intensity[J]. Journal of Applied Mathematics, 2013: 875606.
[15] 韦铸娥, 奚欢, 何家文. 随机波动率与跳扩散组合模型的双币种期权定价[J]. 数学的实践与认识, 2019, 49(11): 306-312.
[16] KRUSE S, NOGEL U. On the pricing of forward starting options in Heston's model on stochastic volatility[J]. Finance and Stochastics, 2005, 9(2): 233-250.
[17] AHLIP R, RUTKOWSKI M. Forward start options under stochastic volatility and stochastic interest rates[J]. International Journal of Theoretical and Applied Finance, 2009, 12(2): 209-225.
[18] 黄国安, 邓国和. 随机波动率下跳扩散模型的远期生效期权[J]. 广西师范大学学报(自然科学版), 2009, 27(3): 35-39.
[19] ZHANG S, SUN Y. Forward starting options pricing with double stochastic volatility, stochastic interest rates and double jumps[J]. Journal of Computational and Applied Mathematics,2017, 325: 34-41.
[20] 薛广明, 邓国和. 带跳随机利率与波动率模型的远期生效期权定价[J]. 数学杂志, 2019, 39(3): 414-430.
[21] XUE G M, DENG G H. Pricing forward-starting power Asian options with floating strike price[J]. Mathematica Applicate, 2017, 30(4): 916-926.
[22] LEE J, LEE Y. Pricing symmetric type of power quanto options[J]. Bulletin of the Korean Mathematical Society, 2019, 56(2): 351-364.
[23] 韦铸娥, 何家文. 基于带跳随机波动率模型的双币种重置期权定价研究[J]. 数学的实践与认识, 2020, 50(3): 48-59.
[24] DUFFINE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica, 2000, 68(6): 1343-1376.
[25] CARR P, MADAN D. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance, 1999, 2(4): 61-73.
[1] WEN Xiaomei, DENG Guohe. Valuation on Compound Power Options under Double StochasticVolatility Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 101-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Li, ZOU Yanli, WANG Yi, LI Ke. A Comparative Study on Three Types of Distributed PowerPlant Connection Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 30 -36 .
[2] SU Xu, LIU Yu-ping. Photosynthetic Characteristics of Mentha haplocalyx Briq. of the Medical Plant Growing in Qinghai,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 76 -81 .
[3] LU Qi-xi, LIN Yong, BIN Shi-yu, TANG Zhang-sheng, PENG Ting. Analysis of Cold Tolerance Measure at Low-temperature in Six Tilapia Families[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 104 -109 .
[4] TANG Nan, YANG Zhi-hao, WU Jia-jin, WANG Yan-hua, LIN Hong-fei. Method of Predicting Protein Complex Based on Supervised Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 174 -179 .
[5] LIU Jie, ZHANG Zi, HUANG Ting-lei. Mobile AODV Routing Protocol Design and Performance Evaluation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 39 -44 .
[6] YOU Li-hua, HUANG Rong-hui. Exponent of Odd Prime Factor in Standard Factorization ofFibonacci Number[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 18 -22 .
[7] HUANG Ting-hong, WANG Miao, MA Kai, YANG Kun-guo, HUANG Ying-da, YOU Teng-li, WANG Xiu-jian. Synthesis,Crystal Structure and Spectroscopic Properties of[Ag(pba)(Et-dtc)]·p-xylene[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 43 -46 .
[8] MA Ying-cang, ZHANG Mei, CUI Mei-ying. Truth Degree Theory of 3-valued Fuzzy Logic System Based onFrank Triangular Norm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 84 -88 .
[9] SHEN Ze-hao, YE Zhong-xing. Fuzzy Clustering Analysis of Customer Credit Risk of Futures Company[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 101 -104 .
[10] CHEN You-ying, ZHENG Zhi, KONG Xiang-zeng, ZHANG Sheng-yuan. Classification of Colon Cancer Data Based on Bayesian Classifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 187 -191 .