Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (5): 158-172.doi: 10.16088/j.issn.1001-6600.2020121101
Previous Articles Next Articles
XIE Donglin, DENG Guohe*
CLC Number:
[1] MERTON R C. Option pricing when underlying stock return are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2): 125-144. [2] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385-407. [3] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3): 637-654. [4] HEYNEN R C, KAT H M. Pricing and hedging power options[J]. Financial Engineering and the Japanese Markets, 1996, 3(3): 253-261. [5] WILIMOTT P. Derivatives: the theory and practice of financial engineering[M]. New York: John Wiley & Sons, 2000: 121-122, 235-237. [6] ZHANG P G. Exotic options[M]. 2nd ed. 北京: 世界图书出版公司, 2009:187-193, 439-446. [7] 郭培栋, 张寄洲. 双币种博弈期权[J]. 数学的实践与认识, 2017, 47(24): 21-29. [8] RUBINSTEIN M. Pay now, choose later[J]. Risk, 1991, 4(2): 44-47. [9] 杨向群, 吴奕东. 带跳的幂型支付欧式期权定价[J]. 广西师范大学学报(自然科学版), 2007, 25(3): 56-59. [10] 苏小囡, 王文胜. 幂式期权在跳扩散模型下的定价[J]. 华东师范大学学报(自然科学版), 2011(3): 12-20, 53. [11] 刘佳钥. 乘积期权的定价及应用[D]. 石家庄: 河北师范大学, 2018. [12] 杨建奇, 赵守娟. 双指数跳扩散模型下远期生效期权的定价[J]. 数学的实践与认识, 2017, 47(6): 29-34. [13] 林涵彬, 苏小囡, 王伟. 混合指数跳扩散模型下远期生效期权的定价[J]. 宁波大学学报(理工版), 2019, 32(5): 104-109. [14] HUANG J, ZHU W, RUAN X. Fast Fouriertransform based power option pricing with stochastic interest rate, volatility, and jump intensity[J]. Journal of Applied Mathematics, 2013: 875606. [15] 韦铸娥, 奚欢, 何家文. 随机波动率与跳扩散组合模型的双币种期权定价[J]. 数学的实践与认识, 2019, 49(11): 306-312. [16] KRUSE S, NOGEL U. On the pricing of forward starting options in Heston's model on stochastic volatility[J]. Finance and Stochastics, 2005, 9(2): 233-250. [17] AHLIP R, RUTKOWSKI M. Forward start options under stochastic volatility and stochastic interest rates[J]. International Journal of Theoretical and Applied Finance, 2009, 12(2): 209-225. [18] 黄国安, 邓国和. 随机波动率下跳扩散模型的远期生效期权[J]. 广西师范大学学报(自然科学版), 2009, 27(3): 35-39. [19] ZHANG S, SUN Y. Forward starting options pricing with double stochastic volatility, stochastic interest rates and double jumps[J]. Journal of Computational and Applied Mathematics,2017, 325: 34-41. [20] 薛广明, 邓国和. 带跳随机利率与波动率模型的远期生效期权定价[J]. 数学杂志, 2019, 39(3): 414-430. [21] XUE G M, DENG G H. Pricing forward-starting power Asian options with floating strike price[J]. Mathematica Applicate, 2017, 30(4): 916-926. [22] LEE J, LEE Y. Pricing symmetric type of power quanto options[J]. Bulletin of the Korean Mathematical Society, 2019, 56(2): 351-364. [23] 韦铸娥, 何家文. 基于带跳随机波动率模型的双币种重置期权定价研究[J]. 数学的实践与认识, 2020, 50(3): 48-59. [24] DUFFINE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica, 2000, 68(6): 1343-1376. [25] CARR P, MADAN D. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance, 1999, 2(4): 61-73. |
[1] | WEN Xiaomei, DENG Guohe. Valuation on Compound Power Options under Double StochasticVolatility Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 101-111. |
|