Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 99-108.doi: 10.16088/j.issn.1001-6600.2020062305

Previous Articles     Next Articles

Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China

LI Meng1,2,3, CAO Qingxian3, HU Baoqing1,2*   

  1. 1. Key Laboratory of Beibu Gulf Environment Change and Resources Use (Nanning Normal University), Nanning Guangxi 530001, China;
    2. Guangxi Key Laboratory of Earth Surface Process and Intelligent Simulation (Nanning Normal University), Nanning Guangxi 530001, China;
    3. Guangxi Academy of Oceanography, Nanning Guangxi 530001, China
  • Revised:2020-07-23 Online:2021-07-25 Published:2021-07-23

Abstract: Using the images with spatial resolution better than 10 m as the data source, the information of the continental coastline of Guangxi in six periods of 1960, 1973, 1989, 2001, 2008, and 2018, are extracted, and the temporal and spatial changes of the coastline of Guangxi under the background of human activities characteristics and drivers are comprehensively analyzed. The results show that: 1) The coastline of the Guangxi continent changed drastically from 1960 to 2018, and the total length showed a trend of first decrease and then increase in 1989 as the node, and the overall reduction was 53.45 km. The period of drastic changes in the length of the coastline of Guangxi occurred from 1960 to 1973. 2) During the study period, the fractal dimension of the coastline in Guangxi showed a downward trend and then an upward trend in 1989 as the node, which was consistent with the trend of the length of the coastline. The complexity of the coastline in each period was in Qinzhou City> Fangchenggang City> Beihai City. 3) Human activity has been the main reason for the significant changes in the coastline of the Guangxi mainland in the past 58 years, including salt fields and culture ponds, seawall construction, sea reclamation (harbors, industry, towns, construction, etc.), road and bridge construction, etc.

Key words: coastline, intensity of change, fractal dimension, Guangxi, China

CLC Number: 

  • P737.1
[1]国家海洋局第一海洋研究所,国家海洋标准计量中心,国家海洋局北海分局, 等. 海洋学术语 海洋地质学: GB/T 18190—2000[S]. 北京:中国标准出版社, 2000: 40.
[2]吴小娟,肖晨超,崔振营, 等. “高分二号”卫星数据面向对象的海岸线提取法[J]. 航天返回与遥感, 2015, 36(4): 84-92. DOI:10.3969/j.issn.1009-8518.2015.04.011.
[3]李猷,王仰麟,彭建, 等.深圳市1978年至2005年海岸线的动态演变分析[J]. 资源科学, 2009, 31(5): 875-883. DOI:10.3969/j.issn.1009-5349.2014.08.002.
[4]张玉新,宋洋,侯西勇. 1988—2015年马六甲海峡岸线时空变化特征分析[J]. 海洋科学, 2019, 43(8): 17-28. DOI:10.11759/hykx20181014001.
[5]HAYDEN B, DOLAN R, FELDER W. Spatial and temporal analyses of shoreline variations[J]. Coastal Engineering, 1978, 2: 351-361. DOI:10.1016/0378-3839(78)90031-5.
[6]MICHALOWSKA K, GLOWIENKA E,PEKALA A. Spatial-temporal detection of changes on the southern coast of the Baltic Sea based on multitemporal aerial photographs[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 41(6): 49-53. DOI:10.5194/isprsarchives-XLI-B2-49-2016.
[7] LI X J,DAMEN M C J. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China[J]. Journal of Marine Systems, 2010, 82(2): 54-61. DOI:10.1016/j.jmarsys.2010.02.005.
[8]周相君. 1973—2013年广西大陆海岸线遥感变迁分析[D]. 青岛: 国家海洋局第一海洋研究所, 2014.
[9]周相君,李晓敏,马毅, 等.基于遥感的广西防城湾海岸线变迁分析[J]. 海洋学研究, 2014, 32(1): 47-55. DOI:10.3969/j.issn.1001-909X.2014.01.006.
[10]高志强,刘向阳,宁吉才, 等.基于遥感的近30 a中国海岸线和围填海面积变化及成因分析[J]. 农业工程学报, 2014, 30(12): 140-147. DOI:10.3969/j.issn.1002-6819.2014.12.017.
[11]XU N,GONG P. Detecting coastline change with all available landsat data: a case study for the State of Texas, USA[C]// AGU Fall Meeting Abstracts. San Framcisco: AGU, 2016:26.
[12]MANDELBROT B. How long is the coast of britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775): 636-648. DOI:10.1126/science.156.3775.636.
[13]李加林,田鹏,邵姝遥, 等.中国东海区大陆岸线变迁及其开发利用强度分析[J]. 自然资源学报, 2019, 34(9): 1886-1901. DOI:10.31497/zrzyxb.20190907.
[14] CARR J R,BENZER W B. On the practice of estimating fractal dimension[J]. Mathematical Geology, 1991, 23(7): 945-958. DOI:10.1007/BF02066734.
[15]HORNE P,SUTEANU C,VAN PROOSDIJ D, et al. Elevation-dependent multiscale analysis of a complex intertidal zone[J]. Journal of Coastal Research, 2013, 29(3): 631-641. DOI:10.2112/JCOASTRES-D-11-00198.1.
[16]许宁,高志强,宁吉才.基于分形维数的环渤海地区海岸线变迁及成因分析[J]. 海洋学研究, 2016, 34(1): 45-51. DOI:10.3969/j.issn.1001-909X.2016.01.006.
[17]黎良财, LU D S,张晓丽, 等.基于遥感的1987—2013年北部湾海岸线变迁研究[J]. 海洋湖沼通报, 2015(4): 132-142.
[18]单继朋.基于RS和GIS的青岛市海岸线变迁及驱动力分析[D]. 青岛:山东科技大学, 2015.
[19]SHEIK M, CHANDRA S. A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system[J]. Geo-spatial Information Science, 2011, 14(4): 282-293.DOI:10.1007/s11806-011-0551-7.
[20]朱长明,张新,骆剑承,等.基于样本自动选择与SVM结合的海岸线遥感自动提取[J]. 国土资源遥感, 2013, 25(2): 69-74. DOI:10.6046/gtzyyg.2013.02.13.
[21]LU S L, WU B F, YAN N N, et al. Water body mapping method with HJ-1A/B satellite imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 428-434. DOI:10.1016/j.jag.2010.09.006.
[22]贾明明,刘殿伟,王宗明, 等.面向对象方法和多源遥感数据的杭州湾海岸线提取分析[J]. 地球信息科学学报, 2013, 15(2): 262-269. DOI:10.3724/SP.J.1047.2013.00262.
[23]赵芝玲,李慧,董月娥, 等. “高分一号”卫星遥感影像面向对象的水边线提取[J]. 航天返回与遥感, 2017, 38(4): 106-116. DOI:10.3969/j.issn.1009-8518.2017.04.013.
[24]WU X L,LIU C X,WU G F. Spatial-temporal analysis and stability investigation of coastline changes: a case study in Shenzhen, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(1): 45-56. DOI:10.1109/JSTARS.2017.2755444.
[25]孙丽娥,马毅,刘荣杰.杭州湾海岸线变迁遥感监测与分析[J]. 海洋测绘, 2013, 33(2): 38-41. DOI:10.3969/j.issn.1671-3044.2013.02.011.
[26]李秀梅,袁承志,李月洋. 渤海湾海岸带遥感监测及时空变化[J]. 国土资源遥感, 2013, 25(2): 156-163. DOI:10.6046/gtzyyg.2013.02.26.
[27]BADRU G,ODUNUGA S,OMOJOLA A, et al. Shoreline change analysis in parts of the barrier-lagoon and mud sections of Nigeria Coast[J]. Journal of Extreme Events, 2018, 4(4): 1850004. DOI:10.1142/S2345737618500045.
[28]姜义,李建芬,康慧, 等.渤海湾西岸近百年来海岸线变迁遥感分析[J]. 国土资源遥感, 2003(4): 54-58.
[29]叶小敏,纪育强,郑全安, 等.胶州湾海岸线历史变迁的分形分析[J]. 海洋科学进展, 2009, 27(4): 495-501. DOI:10.3969/j.issn.1671-6647.2009.04.012.
[30]赵宗泽,刘荣杰,马毅, 等.近30年来湄洲湾海岸线变迁遥感监测与分析[J]. 海岸工程, 2013, 32(1): 19-27. DOI:10.3969/j.issn.1002-3682.2013.01.003.
[31]WANG J, WU Z F, LI S Y, et al. Coastline and land use change detection and analysis with remote sensing in the Pearl River Estuary Gulf[J]. Scientia Geographica Sinica, 2016, 36(12): 1903-1911. DOI:10.13249/j.cnki.sgs.2016.12.016.
[32]RAJ N,GURUGNANAM B, SUDHAKAR V. et al. Estuarine shoreline change analysis along the Ennore River mouth, South East Coast of India,using digital shoreline analysis system[J]. Geodesy and Geodynamics, 2019, 10(3): 205-212.
[33]常军,刘高焕,刘庆生.黄河三角洲海岸线遥感动态监测[J]. 地球信息科学, 2004, 6(1): 94-98. DOI:10.3969/j.issn.1560-8999.2004.01.021.
[34]崔步礼,常学礼,陈雅琳, 等.黄河口海岸线遥感动态监测[J]. 测绘科学, 2007, 32(3): 108-109, 119. DOI:10.3771/j.issn.1009-2307.2007.03.042.
[35]葛振鹏,戴志军,谢华亮, 等.北部湾海湾岸线时空变化特征研究[J]. 上海国土资源, 2014, 35(2): 49-53. DOI:10.3969/j.issn.2095-1329.2014.02.013.
[36]马万栋,吴传庆,殷守敬, 等.广西2000—2013年岸线变化及驱动力分析[J].广西师范大学学报(自然科学版),2015,33(3):54-60. DOI:10.16088/j.issn.1001-6600.2015.03.008.
[37]黎广钊,梁文,王欣, 等.北部湾广西海陆交错带地貌格局与演变及其驱动机制[M].北京:海洋出版社, 2017: 5-6.
[38]冯永玖,袁佳宇,宋丽君, 等.杭州湾海岸线信息的遥感提取及其变迁分析[J]. 遥感技术与应用, 2015, 30(2): 345-352. DOI:10.11873/j.issn.1004-0323.2015.2.0345.
[39]于杰,杜飞雁,陈国宝, 等.基于遥感技术的大亚湾海岸线的变迁研究[J]. 遥感技术与应用, 2009, 24(4): 512-516.
[40]徐进勇,张增祥,赵晓丽, 等. 2000-2012年中国北方海岸线时空变化分析[J]. 地理学报, 2013, 68(5): 651-660.
[41]冯金良,郑丽.海岸线分维的地质意义浅析[J]. 海洋地质与第四纪地质, 1997(1): 46-52.
[42]SINGH H K,GUPTA D. Quantification analysis of chaotic fractal dimensions[J]. International Journal of Engineering Comuter Science, 2013, 2(4): 1192-1199.
[43]SHARMA P,BYRNE S. Constraints on Titan’s topography through fractal analysis of shorelines[J]. Icarus, 2010, 209(2): 723-737. DOI:10.1016/j.icarus.2010.04.023.
[44]韩雪培,傅小毛,汤景燕, 等.图上曲线长度量算的分维纠正法[J]. 华东师范大学学报(自然科学版), 2006(6): 34-40. DOI:10.3969/j.issn.1000-5641.2006.06.004.
[45]高义,苏奋振,周成虎, 等.基于分形的中国大陆海岸线尺度效应研究[J]. 地理学报, 2011, 66(3): 331-339. DOI:10.11821/xb201103005.
[46]周建波,张云涛,殷飞.基于遥感影像的南通市海岸带变迁分析[J]. 现代测绘, 2018, 41(3): 38-40.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11 -19 .
[2] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20 -26 .
[3] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[4] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[5] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[6] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[7] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[8] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[9] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[10] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .