Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (4): 79-92.doi: 10.16088/j.issn.1001-6600.2020102901
Previous Articles Next Articles
LI Songtao, LI Qunhong*, ZHANG Wen
CLC Number:
[1]BERNARDO M D L, CHAMPNEYS A R, BUDD C J, et al. Piecewise-smooth dynamical systems: theory and applications[M]. London: Springer-Verlag London Limited, 2008. DOI:10.1007/s00419-007-0125-1. [2]NORDMARK A B. Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators[J]. Nonlinearity, 2001, 14(6): 1517-1542. DOI:10.1088/0951-7715/14/6/306. [3]DANKOWICZ H, SVAHN F. On the stabilizability of near-grazing dynamics in impact oscillators[J]. International Journal of Robust and Nonlinear Control, 2007, 17(15): 1405-1429. DOI:10.1002/rnc.1252. [4]LEINE R I. Non-smooth stability analysis of the parametrically excited impact oscillator[J]. International Journal of Non-Linear Mechanics, 2012, 47(9): 1020-1032. DOI:10.1016/j.ijnonlinmec.2012.06.010. [5]赵益波, 罗晓曙, 唐国宁,等. 电流反馈型Buck-Boost变换器的非线性动力学研究[J]. 广西师范大学学报(自然科学版), 2005, 23(2): 9-12. DOI:10.3969/j.issn.1001-6600.2005.02.003. [6]WEN G L, YIN S, XU H D, et al. Analysis of grazing bifurcation from periodic motion to quasi-periodic motion in impact-damper systems[J]. Chaos, Solitons and Fractals, 2016, 83: 112-118. DOI:10.1016/j.chaos.2015.11.039. [7]NORDMARK A B. Non-periodic motion caused by grazing incidence in an impact oscillator[J]. Journal of Sound and Vibration, 1991, 145(2): 279-297. DOI:10.1016/0022-460X(91)90592-8. [8]XU H D, YIN S, WEN G L, et al. Discrete-in-time feedback control of near-grazing dynamics in the two-degree-of-freedom vibro-impact system with a clearance[J]. Nonlinear Dynamics, 2017, 87(2): 1127-1137. DOI:10.1007/s11071-016-3103-8. [9]YIN S K, SHEN Y K, WEN G L, et al. Feedback control of grazing-induced chaos in the single-degree-of-freedom impact oscillator[J]. Journal of Computational and Nonlinear Dynamics, 2017, 13(1): 011012. DOI:10.1115/1.4037924. [10]伍帅, 徐洁琼, 王子汉. 一类二自由度碰撞振动系统的余维二擦边分岔研究[J].振动与冲击, 2020, 39(20):113-120. DOI:10.13465/j.cnki.jvs.2020.20.015. [11]PETERKA F. Bifurcations and transition phenomena in an impact oscillator[J]. Chaos, Solitons and Fractals, 1996, 7(10): 1635-1647. DOI:10.1016/S0960-0779(96)00028-8. [12]DANKOWICZ H,ZHAO X P. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators[J]. Physica D Nonlinear Phenomena, 2005, 202(3/4): 238-257. DOI:10.1016/j.physd.2005.02.008. [13]LI Q H, XU J Q, CHEN P, Theoretical analysis of co-dimension-two grazing bifurcations in n-degree-of-freedom impact oscillator with symmetrical constrains[J]. Nonlinear Dynamics, 2015, 82(4): 1641-1657. DOI:10.1007/s11071-015-2266-z. [14]金俐, 陆启韶. 非光滑动力系统Lyapunov指数谱的计算方法[J]. 力学学报,2005, 37(1): 40-46. DOI:10.3321/j.issn:0459-1879.2005.01.006. [15]LI Q H, CHEN Y M. Analysis of the Lyapunov exponential spectrum in a vibro-impact system with two-sided rigid stops[J]. Journal of Vibration and Shock, 2012, 31(7): 148-152. DOI:10.13465/j.cnki.jvs.2012.07.017. [16]苟向锋, 罗冠炜, 吕小红. 含双侧刚性约束碰撞振动系统的混沌控制[J]. 机械科学与技术, 2011, 30(8): 1262-1266. [17]吕小红, 朱喜锋, 罗冠炜. 含双侧约束碰撞振动系统的OGY混沌控制[J]. 机械科学与技术, 2016, 35(4): 531-534. DOI:10.13433/j.cnki.1003-8728.2016.0406. [18]WANG L, XU W , LI Y. Impulsive control of a class of vibro-impact systems[J]. Physics Letters A, 2008, 372(32): 5309-5313. DOI:10.1016/j.physleta.2008.06.027. [19]丁旺才, 谢建华, 李国芳. 三自由度碰撞振动系统的周期运动稳定性与分岔[J].工程力学, 2004, 21(3): 123-128.DOI:10.3969/j.issn.1000-4750.2004.03.023. [20]伍新,文桂林,徐慧东,等. 三自由度含间隙碰撞振动系统Neimark-Sacker 分岔的反控制[J]. 物理学报, 2015, 64(20): 200504. DOI:10.7498/aps.64.200504. |
[1] | YANG Kun, LIN Jiao, JIANG Gui-rong. Dynamics Analysis of a Stochastic SIS Epidemic Model with Birth Pulses [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 81-86. |
|