Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 106-114.doi: 10.16088/j.issn.1001-6600.2019.01.012

Previous Articles     Next Articles

Public Traffic Passenger Recognition Based on Differential Evolution Algorithm SVM

LÜ Panlong,WENG Xiaoxiong*, PENG Xinjian   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510640,China
  • Received:2018-07-01 Online:2019-01-20 Published:2019-01-08

Abstract: Commuter passengers are people who travel during the rush hours in the morning and evening and have a regular pattern of travel. Accurate identification of commuter crowds from bus credit card data is of great significance for taking measures to alleviate traffic congestion during the rush hours in morning and evening and for overall urban line network planning and adjustment. Based on the data of Zhuhai bus IC card, this paper proposes a public transportation identification method based on differential evolutionary algorithm to optimize support vector machine (SVM). Firstly, the commuter passenger survey data are combined with the actual swipe data to analyze the characteristic attributes of commuter passenger travel. Then the SVM algorithm is used to build the classification recognition model, and a differential evolution algorithm (DE) is used to optimize the parameters of the SVM to obtain the optimal identification model, whose recognition accuracy is as high as 94.28%, better than other algorithm models. Finally, the model is used to identify the commuters in the Zhuhai bus IC data. The results show that the number of public transportation personnel is 178,259, accounting for 21.47% of the total number of bus trips.

Key words: urban traffic, bus IC card, differential evolution, SVM, commuter passengers

CLC Number: 

  • U491
[1] 李佳怡, 张锦, 张静文,等. 城市公交乘客下车站点推算方法和有效性评价[J]. 武汉大学学报(信息科学版), 2018, 43(8):1172-1177.
[2] EVANS J P, SUN T S, CHIU C, et al. Uvular approximation as an articulatory vowel feature[J]. Journal of the International Phonetic Association, 2016, 46(1):1-31.
[3] 程功. 基于公交到站时间预测的公交调度模型研究[D]. 广州:华南理工大学, 2010.
[4] 滕靖, 王何斐, 杨新征,等. 基于乘客主观感知的公交客流拥塞量化表征模型[J]. 中国公路学报,2018,31(6):299-307.
[5] 畅玉皎, 杨东援. 基于车牌照数据的通勤特征车辆识别研究[J]. 交通运输系统工程与信息, 2016, 16(2):77-82.
[6] 鲜于建川. 通勤者活动—出行选择行为研究[D].上海:上海交通大学,2009.
[7] CHU K K A, CHAPLEAU R, TREPANIER M. Driver-assisted bus interview: passive transit travel survey with smart card automatic fare collection system and applications[J]. Transportation Research Record Journal of the Transportation Research Board, 2009(2105):82-87.
[8] 陈君,杨东援.基于APTS数据的公交卡乘客通勤OD分布估计方法[J].交通运输系统工程与信息,2013,13(4):47-53.
[9] 周亚楠. 基于一卡通数据分析的通勤性定制公交线路规划[D].长春:吉林大学,2017.
[10] 孙世超,杨东援.基于朴素贝叶斯分类器的公交通勤人群辨识方法[J].交通运输系统工程与信息,2015,15(6):46-53.
[11] 孙世超,庄斌,黄伟.基于机器学习的公交卡数据中通勤人群辨识方法[J].交通工程,2017,17(1):58-64.
[12] 张春美, 陈杰, 辛斌. 参数适应性分布式差分进化算法[J]. 控制与决策, 2014, 29(4):701-706.
[13] ONWUBOLU G, DAVENDRA D. Scheduling flow shops using differential evolution algorithm[J]. European Journal of Operational Research, 2006, 171(2):674-692.
[14] 汪慎文, 丁立新, 张文生,等. 差分进化算法研究进展[J]. 武汉大学学报(理学版),2014, 60(4):283-292.
[15] 谢志鹏. XIE Z P. Positive kernel of support vector machine[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2009, 26(2):114-121.
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1-10.
[2] HUANG Weiqi, JIN Wenzhou, HUANG Jingxiang, HAN Bowen. Pricing Problem of Customized Bus under Different Market Strategies [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 8-17.
[3] ZHANG Fang. Ecological Landscape Patterns in Ebinur Lake Region Based on Remote Sensing [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 156-164.
[4] LIU Yanhong, LUO Xiaoshu, CHEN Jin, GUO Lei. Research on Cervical Cell Image Feature Extraction and Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 61-66.
[5] JIANG Xiao-feng, XU Lun-hui, ZHU Yue. Short-term Traffic Flow Prediction Based on SVM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!